Home
工學院
course information of 113 - 2 | 5514 Deep Learning(深度學習)

Taught In English5514 - 深度學習 Deep Learning


教育目標 Course Target

教師於課堂中引導式講授目前國際發展最先進之深度學習方法學及其應用,帶領學生原理介紹、數學推導實務應用,熟悉使用深度學習。 (1) 了解深度學習技術的數學基礎 (2) 熟悉深度學習工具(例如 PyTorch、TensorFlow 等) (3) 探討深度學習技術的最新發展及其應用In the classroom, teachers teach the current leading in-depth learning methods and applications of international development, and lead students to introduce principles and mathematics to promote practical applications, and be familiar with using in-depth learning. (1) Understand the mathematical foundations of deep learning technology (2) Familiar with in-depth learning tools (such as PyTorch, TensorFlow, etc.) (3) Explore the latest developments and applications of in-depth learning technology


課程概述 Course Description

本課程旨在提供學生深入了解並實際操作深度學習技術的機會,課程將涵蓋深度學習的基本概念與核心技術。同時,透過實作環節,學生將學習如何使用工具如 Keras 和 PyTorch 等,應用於圖像辨識、自然語言處理等資料中。本課程適合想提升實作技能的學生,最終幫助學生掌握設計和優化深度學習模型的能力,應用於各種實際問題。
This course aims to provide students with opportunities to gain insight and implement deep learning techniques, which will cover the basic concepts and core technologies of deep learning. At the same time, through the implementation cycle, students will learn how to use tools such as Keras and PyTorch to apply them to image identification, natural language processing and other materials. This course is suitable for students who want to improve their practical skills, and ultimately helps students master the ability to design and optimize deep learning models, and is applied to various practical problems.


參考書目 Reference Books

1. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 1st Ed.,MIT Press, Dec. 2016
2. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd edition, Nov. 2018

1. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 1st Ed.,MIT Press, Dec. 2016
2. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd edition, Nov. 2018


評分方式 Grading

評分項目 Grading Method 配分比例 Grading percentage 說明 Description
4 Labs (done individually)4 Labs (done individually)
4 labs (done individually)
80
Final examFinal exam
final exam
20

授課大綱 Course Plan

Click here to open the course plan. Course Plan
交換生/外籍生選課登記 - 請點選下方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by click the button below.
請先登入才能進行選課登記 Please login first


相似課程 Related Course

必選-1013 Deep Learning Applications / 深度學習應用 (資工系3A,授課教師:陳隆彬/廖元勳,三/2,3,4[C220])
選修-5413 The Application and Implementation of AI Deep Learning in Animal Physiology and Behavior / AI深度學習在動物生理與行為之應用與實作 (生科碩博1,2,授課教師:蕭崇德,)
選修-5576 Deep Learning and Engineering Applications / 深度學習與工程應用 (工工碩博1,2,授課教師:黃鼎翔,二/6,7,8[IEⅡ102])
選修-6189 Deep Learning / 深度學習 (統計碩博1,2,授課教師:蔡承翰,一/5,6,7[M442])

Course Information

Description

學分 Credit:0-3
上課時間 Course Time:Thursday/B,5,6[遠距課程]
授課教師 Teacher:彭文孝/陳永昇/謝秉均
修課班級 Class:共選修4,碩博1,2
選課備註 Memo:教育部補助臺灣大專院校人工智慧學程聯盟,開設學校:陽明交通大學,同步遠距上課時間: 12:20-15:10。英語授課
This Course is taught In English 授課大綱 Course Plan: Open

選課狀態 Attendance

There're now 19 person in the class.
目前選課人數為 19 人。

請先登入才能進行選課登記 Please login first