Home
資訊工程學系在職專班
course information of 107 - 2 | 5737 Machine Learning(機器學習)

5737 - 機器學習 Machine Learning


教育目標 Course Target

機器學習是透過演算法,使用歷史資料做訓練以建立模型,並依此模型對於新的資料進行預測。本課程涵蓋機器學習的基礎理論、演算法、以及應用,探討什麼是機器學習?機器可能學習嗎?如何學習?如何做到較好的學習?讓同學了解機器學習的理論與實務。Machine learning uses algorithms to train historical data to build models and predict new data based on this model. This course covers the basic theories, algorithms, and applications of machine learning, and explores what is machine learning? Can the machine be learned? How to learn? How to achieve better learning? Let students understand the theory and practice of machine learning.


課程概述 Course Description

Machine learning is the science of data analysis that automates a massive number of models building. Its process uses data to iteratively detect patterns and adjust models accordingly, and enables computers to learn without explicitly programmed. This course introduces some important concepts and algorithms of machine learning from both theoretical and practical perspective. The topics include, but not limited to: (1) Supervised learning (Linear Models for Regression and Classification, Kernel Smoothing Methods, Decision Trees, Support Vector Machines, and Neural Networks). (2) Unsupervised learning (Association Rules and Cluster Analysis). (3) Ensemble learning (Bagging, Boosting, Random Forests). (4) Others (MCMC, Optimization Integration).
Machine learning is the science of data analysis that automatically a massive number of models building. Its process uses data to iteratively detect patterns and adjust models accordingly, and enables computers to learn without explicitly programmed. This course introduces some important concepts and algorithms of machine learning from both theoretical and practical perspective. The topics include, but not limited to: (1) Supervised learning (Linear Models for Regression and Classification, Kernel Smoothing Methods, Decision Trees, Support Vector Machines, and Neural Networks). (2) Unsupervised learning (Association Rules and Cluster Analysis). (3) Ensemble learning (Bagging, Boosting, Random Forests). (4) Others (MCMC, Optimization Integration).


參考書目 Reference Books

[1] Yaser S. Abu-Mostafa, Malik Magdon-Ismail and Hsuan-Tien Lin, Learning From Data, AMLbook.com, 2012.
[2] Ethem Alpaydın, Introduction to Machine Learning, 2nd Ed. The MIT Press Cambridge, 2010.
[3] An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples, by Nick McCrea.
[4] Deep Reinforcement Learning, David Silver, Google DeepMind, 2017 (http://www.iclr.cc/lib/exe/fetch.php?media=iclr2015:silver-iclr2015.pdf)
[5] Reinforcement Learning: An Introduction, by Richard S. Sutton,‎ Andrew G. Barto, A Bradford Book, 2017


[1] Yaser S. Abu-Mostafa, Malik Magdon-Ismail and Hsuan-Tien Lin, Learning From Data, AMLbook.com, 2012.
[2] Ethem Alpaydın, Introduction to Machine Learning, 2nd Ed. The MIT Press Cambridge, 2010.
[3] An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples, by Nick McCrea.
[4] Deep Reinforcement Learning, David Silver, Google DeepMind, 2017 (http://www.iclr.cc/lib/exe/fetch.php?media=iclr2015:silver-iclr2015.pdf)
[5] Reinforcement Learning: An Introduction, by Richard S. Sutton,‎ Andrew G. Barto, A Bradford Book, 2017


評分方式 Grading

評分項目 Grading Method 配分比例 Grading percentage 說明 Description
期中考期中考
Midterm exam
30 筆試
期末專案期末專案
Final period project
30 分組專案
作業 作業
Action
30 回家作業
出席出席
Attend
10 出席

授課大綱 Course Plan

Click here to open the course plan. Course Plan
交換生/外籍生選課登記 - 請點選下方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by click the button below.
請先登入才能進行選課登記 Please login first


相似課程 Related Course

選修-0857 Machine Learning and TensorFlow / 機器學習與TensorFlow (工學院2-4,授課教師:焦信達,四/9,10,11[ST023])
選修-1254 Machine Learning With Python Programming / Python程式語言與機器學習 (電機系3,4,授課教師:蔣惟丞,四/5,6,7[ST020])
選修-5476 Machine Learning / 機器學習 (應數系3,4,碩1,2,授課教師:黃韋強,二/2,3,4[ST508])

Course Information

Description

學分 Credit:0-3
上課時間 Course Time:Tuesday/11,12,13[ST436]
授課教師 Teacher:陳隆彬
修課班級 Class:資工系4,資訊專班1,2
選課備註 Memo:三大領域:人工智慧;大四可選;延修生學分費以專班標準收取
授課大綱 Course Plan: Open

選課狀態 Attendance

There're now 14 person in the class.
目前選課人數為 14 人。

請先登入才能進行選課登記 Please login first