Home
應用數學系
course information of 107 - 2 | 5476 Machine Learning(機器學習)

5476 - 機器學習 Machine Learning


教育目標 Course Target

機器學習是大數據時代下資料科學快速發展的研究課題,其應用範圍含括在工程、生醫、社會經濟與工程領域,在加速解決許多既有問題時,也創造出更多的應用。數據科學包含數學與統計方法,計算機軟硬體,以及應用領域知識等三個面向,掌握數學科學分析工具是大數據研究的基本技能,而了解其背後數學與統計的基本原理,可更有效率針對資料特性去選擇正確的模型進行分析。   本課程以Python套件Scikit-learn作為機器學習軟體實作入門,其內容含括: 1.監督式學習 (1)迴歸模型:簡單線性迴歸,多變數線性迴歸,多項式迴歸 (2)分類模型:邏輯迴歸,支持向量機,貝氏分類器,決策樹,隨機森林 2.非監督式學習 (1)分群模型:K-means (2) 特徵降微:主成分分析 3.機器學習實作上會面臨的問題與解決的辦法,包含資料前處理、超參數調教、偏差與變異、欠擬合、過度擬合以及學習曲線、測試曲線的行為。   此外,在有了機器學習基本概念後,我們將學習由Keras實作人工神經網路(ANN)、深度學習(DNN)與卷積神經網路(CNN),包含迴歸分析、手寫數字辨識、影像識別等人工智慧實務應用,並了解其背後直觀的數學意義與技巧。Machine learning is a research topic for the rapid development of data science in the big data era. Its application scope includes engineering, medicine, social economy and engineering fields. When accelerating the solution of many existing problems, it also creates more applications. Mathematical science includes three aspects: mathematics and statistical methods, computer software and hardware, and application domain knowledge. Mastering mathematical scientific analysis tools is a basic skill in large data research, and understanding the basic principles of mathematics and statistics behind it can more efficiently select correct models for analysis of data characteristics. This course uses Python suite Scikit-learn as the machine learning software, and its content includes: 1. Supervisor-style learning (1) Recitation model: simple linear replication, multiple variable linear replication, multi-type replication (2) Category model: logical retelling, support vector machine, Belich classification machine, decision tree, random forest 2. Non-supervised learning (1) Grouping model: K-means (2) Characteristic reduction: principal component analysis 3. The methods for problems and solutions that will be faced in machine learning practice include pre-processing of data, over-parameter training, deviation and variation, under-combination, over-combination, learning curves and testing curves. In addition, after the basic concepts of machine learning, we will learn Keras’s artificial neural network (ANN), deep learning (DNN) and volume neural network (CNN), including artificial intelligence practical applications such as reproductive analysis, handwriting digital identification, and image identification, and understand the mathematical meanings and techniques behind it.


課程概述 Course Description

Machine learning is the science of data analysis that automates a massive number of models building. Its process uses data to iteratively detect patterns and adjust models accordingly, and enables computers to learn without explicitly programmed. This course introduces some important concepts and algorithms of machine learning from both theoretical and practical perspective. The topics include, but not limited to: (1) Supervised learning (Linear Models for Regression and Classification, Kernel Smoothing Methods, Decision Trees, Support Vector Machines, and Neural Networks). (2) Unsupervised learning (Association Rules and Cluster Analysis). (3) Ensemble learning (Bagging, Boosting, Random Forests). (4) Others (MCMC, Optimization Integration).
Machine learning is the science of data analysis that automatically a massive number of models building. Its process uses data to iteratively detect patterns and adjust models accordingly, and enables computers to learn without explicitly programmed. This course introduces some important concepts and algorithms of machine learning from both theoretical and practical perspective. The topics include, but not limited to: (1) Supervised learning (Linear Models for Regression and Classification, Kernel Smoothing Methods, Decision Trees, Support Vector Machines, and Neural Networks). (2) Unsupervised learning (Association Rules and Cluster Analysis). (3) Ensemble learning (Bagging, Boosting, Random Forests). (4) Others (MCMC, Optimization Integration).


參考書目 Reference Books

G. James, D. Witten, T. Hastie and R. Tibshirani. An Introduction to Statistical Learning: with Applications in R (2013). Springer-Verlag.
G. James, D. Witten, T. Hastie and R. Tibshirani. An Introduction to Statistical Learning: with Applications in R (2013). Springer-Verlag.


評分方式 Grading

評分項目 Grading Method 配分比例 Grading percentage 說明 Description
隨堂測驗隨堂測驗
Lutang Test
20
作業作業
Action
60
期末考試期末考試
Final exam
20

授課大綱 Course Plan

Click here to open the course plan. Course Plan
交換生/外籍生選課登記 - 請點選下方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by click the button below.
請先登入才能進行選課登記 Please login first


相似課程 Related Course

選修-0857 Machine Learning and TensorFlow / 機器學習與TensorFlow (工學院2-4,授課教師:焦信達,四/9,10,11[ST023])
選修-1254 Machine Learning With Python Programming / Python程式語言與機器學習 (電機系3,4,授課教師:蔣惟丞,四/5,6,7[ST020])
選修-5737 Machine Learning / 機器學習 (資工系4,資訊專班1,2,授課教師:陳隆彬,二/11,12,13[ST436])

Course Information

Description

學分 Credit:0-3
上課時間 Course Time:Tuesday/2,3,4[ST508]
授課教師 Teacher:黃韋強
修課班級 Class:應數系3,4,碩1,2
選課備註 Memo:大學部可抵專題,3-4年級可修
授課大綱 Course Plan: Open

選課狀態 Attendance

There're now 11 person in the class.
目前選課人數為 11 人。

請先登入才能進行選課登記 Please login first