6239 - 自然語言處理:理論、模型與應用
Natural Language Processing: Theory, Models, and Applications
教育目標 Course Target
本課程介紹自然語言處理(NLP)的核心理論、演算法與實務應用,從傳統文字處理與統計模型,逐步延伸至深度學習與大型語言模型(LLM)。課程內容涵蓋文字表示、語言模型、序列建模、語意理解、文本生成與實際應用案例,並搭配 Python 與主流 NLP 套件進行實作,培養學生分析、設計與應用自然語言系統的能力。
This course introduces the core theories, algorithms and practical applications of natural language processing (NLP), from traditional word processing and statistical models to gradually extending to deep learning and large language models (LLM). The course content covers text representation, language model, sequence modeling, semantic understanding, text generation and practical application cases, and is implemented with Python and mainstream NLP packages to cultivate students' ability to analyze, design and apply natural language systems.
參考書目 Reference Books
自行提供上課簡報
Benjamin Bengfort , Rebecca Bilbro , Tony Ojeda. Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning, 2018
Provide class presentations by yourself
Benjamin Bengfort , Rebecca Bilbro , Tony Ojeda. Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning, 2018
評分方式 Grading
| 評分項目 Grading Method |
配分比例 Percentage |
說明 Description |
|---|---|---|
|
期中考 midterm exam |
25 | |
|
期末報告 Final report |
40 | |
|
出席 Attend |
15 | |
|
作業課堂討論 Homework class discussion |
20 |
授課大綱 Course Plan
點擊下方連結查看詳細授課大綱
Click the link below to view the detailed course plan
相似課程 Related Courses
無相似課程 No related courses found
課程資訊 Course Information
基本資料 Basic Information
- 課程代碼 Course Code: 6239
- 學分 Credit: 0-3
-
上課時間 Course Time:Tuesday/6,7,8[M217]
-
授課教師 Teacher:賴翌維
-
修課班級 Class:資管系3,4,碩1,2
-
選課備註 Memo:電腦教室
交換生/外籍生選課登記
請點選上方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by clicking the button above.