1596 - 機器學習

Machine Learning

教育目標 Course Target

這門課程主要介紹「機器學習」所需處理的各類問題,以及所使用的分析方法和模型。課程將以簡單的概念與理論講解各類方法與模型,並以 Python 進行演示。課程結束後,學生們將能夠運用「機器學習」的方法進行分析與建模。

This course mainly introduces the various problems that "machine learning" needs to deal with, as well as the analysis methods and models used. The course will explain various methods and models using simple concepts and theories, and demonstrate them in Python. After the course, students will be able to use "machine learning" methods for analysis and modeling.

課程概述 Course Description

Machine learning is the science of data analysis that automates a massive number of models building. Its process uses data to iteratively detect patterns and adjust models accordingly, and enables computers to learn without explicitly programmed. This course introduces some important concepts and algorithms of machine learning from both theoretical and practical perspective. The topics include, but not limited to: (1) Supervised learning (Linear Models for Regression and Classification, Kernel Smoothing Methods, Decision Trees, Support Vector Machines, and Neural Networks). (2) Unsupervised learning (Association Rules and Cluster Analysis). (3) Ensemble learning (Bagging, Boosting, Random Forests). (4) Others (MCMC, Optimization Integration).

Machine learning is the science of data analysis that automates a massive number of models building. Its process uses data to iteratively detect patterns and adjust models accordingly, and enables computers to learn without explicitly programmed. This course introduces some important concepts and algorithms of machine learning from both theoretical and practical perspective. The topics include, but not limited to: (1) Supervised learning (Linear Models for Regression and Classification, Kernel Smoothing Methods, Decision Trees, Support Vector Machines, and Neural Networks). (2) Unsupervised learning (Association Rules and Cluster Analysis). (3) Ensemble learning (Bagging, Boosting, Random Forests). (4) Others (MCMC, Optimization Integration).

參考書目 Reference Books

1. Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. " O'Reilly Media, Inc.".
2. James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). An introduction to statistical learning: With applications in python. Springer Nature.

1. Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. " O'Reilly Media, Inc.".
2. James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). An introduction to statistical learning: With applications in python. Springer Nature.

評分方式 Grading

評分項目
Grading Method
配分比例
Percentage
說明
Description
作業/隨堂習作
Homework/classroom exercises
30
期中考試
midterm exam
30
期末報告
Final report
30
出席狀況與平時表現
Attendance status and usual performance
10

授課大綱 Course Plan

點擊下方連結查看詳細授課大綱
Click the link below to view the detailed course plan

查看授課大綱 View Course Plan

相似課程 Related Courses

課程代碼
Course Code
課程名稱
Course Name
授課教師
Instructor
時間地點
Time & Room
學分
Credits
操作
Actions
選修-0744
共選修3,4(工學院開) 陳仕偉 五/2,3,4[ST436] 0-3 詳細資訊 Details
選修-1028
資工系3,4 陳仕偉 五/2,3,4[ST436] 0-3 詳細資訊 Details
選修-1116
電機系3,4 陳昱仁 二/7,8,9[HT109] 0-3 詳細資訊 Details
選修-1173
英授 Taught in English 共選修1-4(管院開) 金泰星 三/2,3,4[M007] 0-3 詳細資訊 Details
選修-5856
共選修3,4,碩1,2(管院開) 姜自強 二/6,7,8[遠距課程] 0-3 詳細資訊 Details
選修-6062
高階經管班1,2 姜自強 五/10,11,12[M023] 0-1 詳細資訊 Details
選修-6236
資管系3,4,碩1,2 姜自強 二/6,7,8[遠距課程] 0-3 詳細資訊 Details

課程資訊 Course Information

基本資料 Basic Information

  • 課程代碼 Course Code: 1596
  • 學分 Credit: 0-3
  • 上課時間 Course Time:
    Thursday/2,3,4[M442]
  • 授課教師 Teacher:
    蔡承翰
  • 修課班級 Class:
    統計系2-4
  • 選課備註 Memo:
    大數據資料群組(110-114適用)
選課狀態 Enrollment Status

目前選課人數 Current Enrollment: 40 人

交換生/外籍生選課登記

請點選上方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by clicking the button above.