1596 - 機器學習
Machine Learning
教育目標 Course Target
這門課程主要介紹「機器學習」所需處理的各類問題,以及所使用的分析方法和模型。課程將以簡單的概念與理論講解各類方法與模型,並以 Python 進行演示。課程結束後,學生們將能夠運用「機器學習」的方法進行分析與建模。
This course mainly introduces the various problems that "machine learning" needs to deal with, as well as the analysis methods and models used. The course will explain various methods and models using simple concepts and theories, and demonstrate them in Python. After the course, students will be able to use "machine learning" methods for analysis and modeling.
課程概述 Course Description
Machine learning is the science of data analysis that automates a massive number of models building. Its process uses data to iteratively detect patterns and adjust models accordingly, and enables computers to learn without explicitly programmed. This course introduces some important concepts and algorithms of machine learning from both theoretical and practical perspective. The topics include, but not limited to: (1) Supervised learning (Linear Models for Regression and Classification, Kernel Smoothing Methods, Decision Trees, Support Vector Machines, and Neural Networks). (2) Unsupervised learning (Association Rules and Cluster Analysis). (3) Ensemble learning (Bagging, Boosting, Random Forests). (4) Others (MCMC, Optimization Integration).
Machine learning is the science of data analysis that automates a massive number of models building. Its process uses data to iteratively detect patterns and adjust models accordingly, and enables computers to learn without explicitly programmed. This course introduces some important concepts and algorithms of machine learning from both theoretical and practical perspective. The topics include, but not limited to: (1) Supervised learning (Linear Models for Regression and Classification, Kernel Smoothing Methods, Decision Trees, Support Vector Machines, and Neural Networks). (2) Unsupervised learning (Association Rules and Cluster Analysis). (3) Ensemble learning (Bagging, Boosting, Random Forests). (4) Others (MCMC, Optimization Integration).
參考書目 Reference Books
1. Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. " O'Reilly Media, Inc.".
2. James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). An introduction to statistical learning: With applications in python. Springer Nature.
1. Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. " O'Reilly Media, Inc.".
2. James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). An introduction to statistical learning: With applications in python. Springer Nature.
評分方式 Grading
| 評分項目 Grading Method |
配分比例 Percentage |
說明 Description |
|---|---|---|
|
作業/隨堂習作 Homework/classroom exercises |
30 | |
|
期中考試 midterm exam |
30 | |
|
期末報告 Final report |
30 | |
|
出席狀況與平時表現 Attendance status and usual performance |
10 |
授課大綱 Course Plan
點擊下方連結查看詳細授課大綱
Click the link below to view the detailed course plan
相似課程 Related Courses
| 課程代碼 Course Code |
課程名稱 Course Name |
授課教師 Instructor |
時間地點 Time & Room |
學分 Credits |
操作 Actions |
|---|---|---|---|---|---|
|
選修-0744
|
共選修3,4(工學院開) 陳仕偉 | 五/2,3,4[ST436] | 0-3 | 詳細資訊 Details | |
|
選修-1028
|
資工系3,4 陳仕偉 | 五/2,3,4[ST436] | 0-3 | 詳細資訊 Details | |
|
選修-1116
|
電機系3,4 陳昱仁 | 二/7,8,9[HT109] | 0-3 | 詳細資訊 Details | |
|
選修-1173
|
英授 Taught in English | 共選修1-4(管院開) 金泰星 | 三/2,3,4[M007] | 0-3 | 詳細資訊 Details |
|
選修-5856
|
共選修3,4,碩1,2(管院開) 姜自強 | 二/6,7,8[遠距課程] | 0-3 | 詳細資訊 Details | |
|
選修-6062
|
高階經管班1,2 姜自強 | 五/10,11,12[M023] | 0-1 | 詳細資訊 Details | |
|
選修-6236
|
資管系3,4,碩1,2 姜自強 | 二/6,7,8[遠距課程] | 0-3 | 詳細資訊 Details |
課程資訊 Course Information
基本資料 Basic Information
- 課程代碼 Course Code: 1596
- 學分 Credit: 0-3
-
上課時間 Course Time:Thursday/2,3,4[M442]
-
授課教師 Teacher:蔡承翰
-
修課班級 Class:統計系2-4
-
選課備註 Memo:大數據資料群組(110-114適用)
交換生/外籍生選課登記
請點選上方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by clicking the button above.