5442 - 失智症與人工智慧

Dementia and Artificial Intelligence

教育目標 Course Target

本課程旨在引導學生深入認知障礙,並結合資料科學方法進行跨領域的實務應用。

一、課程目標(Course Objectives)

學生修習本課程後,應能:

理解核心知識:掌握認知障礙的定義、主要分類、成因及危險因子。
聽證與評估:學習聽證障礙的常見症狀,並熟悉其標準評估方法與診斷流程。
了解對策:認識策略認知障礙的主要治療方式與長期管理策略。
應用資料分析:能夠運用機器學習等資料分析方法,對認知障礙相關資料集(如MRI影像、失智症資料、TRODAT掃描)進行初步探討與分析。
培養研究能力:透過分組專題,學習獨立或合作進行主題研究,並能有效呈現與溝通研究成果。
二、課程內涵(課程內容)

認知障礙學理基礎:

由專業醫師介紹認知功能障礙的學術理論,探討其作為影響與工作能力的綜合性症狀(如記憶力、語言能力、計算、判斷、抽象思考、空間感知、注意力等的相關性變化)。
深入解析故障的多元成因、危險因子、臨床表徵及指紋診斷標準。
數據科學在認知障礙的應用:

介紹如何運用數學原理與程式語言(結合人工智慧/機器學習方法)分析認知功能障礙相關數據。
強調資料分析在認知障礙研究與臨床應用的跨領域價值。
專題實踐與研究發表:

學生將分組,分別針對以下主題進行資料實務分析與專題研究:
MRI影像分析組:探討腦部結構與功能影像在認知障礙研究的應用。
失智症資料分析組:分析臨床失智症相關數據,探索潛在模式或關聯性。
課程引導各組學生學習實際資料處理、模型近期與成果展望,目標是能夠獨立或合作完成專題研究,並鼓勵將研究成果整理成供發表論文的形式(如學術期刊)。

This course aims to guide students in-depth into cognitive disorders and combine data science methods with cross-domain practical applications.

1. Course Objectives

After taking this course, students should be able to:

Understand core knowledge: Master the definition, main classification, causes and risk factors of cognitive impairment.
Hearing and Assessment: Learn the common symptoms of hearing disorders and become familiar with their standard assessment methods and diagnostic procedures.
Understanding Strategies: Understanding Strategies The major treatments and long-term management strategies for cognitive impairment.
Applied data analysis: Able to use data analysis methods such as machine learning to conduct preliminary exploration and analysis of cognitive impairment-related data sets (such as MRI images, dementia data, and TRODAT scans).
Cultivate research capabilities: Through grouping topics, you can learn to conduct topic research independently or collaboratively, and be able to effectively present and communicate research results.
2. Course connotation (course content)

Theoretical basis of cognitive impairment:

Professional doctors will introduce the academic theory of cognitive dysfunction and explore it as a comprehensive symptom that affects work ability (such as related changes in memory, language ability, calculation, judgment, abstract thinking, spatial perception, attention, etc.).
In-depth analysis of the multiple causes, risk factors, clinical manifestations and fingerprint diagnostic standards of failures.
Application of data science to cognitive impairment:

Introduces how to use mathematical principles and programming languages ​​(combined with artificial intelligence/machine learning methods) to analyze data related to cognitive dysfunction.
Emphasize the cross-field value of data analysis in cognitive impairment research and clinical application.
Special topic practice and research publications:

Students will be divided into groups to conduct practical data analysis and special research on the following topics:
MRI Image Analysis Group: Explore the application of brain structural and functional imaging in the study of cognitive impairment.
Dementia Data Analysis Group: Analyze clinical dementia-related data to explore potential patterns or correlations.
The course guides students in each group to learn actual data processing, model near-term, and results prospects. The goal is to be able to complete special research independently or collaboratively, and is encouraged to organize research results into a form for publication (such as academic journals).

參考書目 Reference Books

1. 失智症診療手冊 第三版 衛生福利部 (2017)
2. ABC of Dementia
作者:Coope
出版商:Wiley-Blackwell
出版年代/版次 2020/ 2
ISBN/ 9781119599395
3. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition
作者:Aurélien Géron
出版商:O'Reilly Media, Inc.
出版年代/版次 September 2019/ 2
ISBN/ 9781492032649
4. The Feasibility of Differentiating Lewy Body Dementia and Alzheimer’s Disease by Deep Learning Using ECD SPECT Images. Ni YC, Tseng FP, Pai MC, Hsiao IT, Lin KJ, Lin ZK, Lin CY, Chiu PY , Hung GU, Chang CC, Chang YT, Chuang KJ and Alzheimer’s Disease Neuroimaging Initiative. Diagnostics 2021, 11(11), 2091; https://doi.org/10.3390/diagnostics11112091.
5. Yang YW, Hsu KC, Wei CY, Tzeng RC, Chiu PY*. Operational Determination of Subjective Cognitive Decline, Mild Cognitive Impairment, and Dementia Using Sum of Boxes of the Clinical Dementia Rating Scale. Front. Aging Neurosci., 07 September 2021 | https://doi.org/10.3389/fnagi.2021.705782. (* Corresponding author)
6. Chang YF, Loi WY, Chiu PY*, Huang HN. Classification of Dementia Severity in Taiwan Based on History-Based Clinical Diagnosis System. Am J Alzheimers Dis Other Demen. 2020 Jan-Dec;35:1533317520970788. doi: 10.1177/1533317520970788. (* Corresponding author)

1. Dementia Diagnosis and Treatment Manual 3rd Edition Ministry of Health and Welfare (2017)
2. ABC of Dementia
Author:Coope
Publisher: Wiley-Blackwell
Publication year/edition 2020/ 2
ISBN/ 9781119599395
3. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition
Author:Aurélien Géron
Publisher:O'Reilly Media, Inc.
Publication year/edition September 2019/ 2
ISBN/ 9781492032649
4. The Feasibility of Differentiating Lewy Body Dementia and Alzheimer’s Disease by Deep Learning Using ECD SPECT Images. Ni YC, Tseng FP, Pai MC, Hsiao IT, Lin KJ, Lin ZK, Lin CY, Chiu PY, Hung GU, Chang CC, Chang YT, Chuang KJ and Alzheimer’s Disease Neuroimaging Initiative. Diagnostics 2021, 11(11), 2091; https://doi.org/10.3390/diagnostics11112091.
5. Yang YW, Hsu KC, Wei CY, Tzeng RC, Chiu PY*. Operational Determination of Subjective Cognitive Decline, Mild Cognitive Impairment, and Dementia Using Sum of Boxes of the Clinical Dementia Rating Scale. Front. Aging Neurosci., 07 September 2021 | https://doi.org/10.3389/fnagi.2021.705782. (* Corresponding author)
6. Chang YF, Loi WY, Chiu PY*, Huang HN. Classification of Dementia Severity in Taiwan Based on History-Based Clinical Diagnosis System. Am J Alzheimers Dis Other Demen. 2020 Jan-Dec;35:1533317520970788. doi: 10.1177/1533317520970788. (* Corresponding author)

評分方式 Grading

評分項目
Grading Method
配分比例
Percentage
說明
Description
出席
Attend
10 出席率
專題實做
Special topic implementation
70 期末實做呈現
課堂報告與討論
Class reports and discussions
20 課堂的進度報告

授課大綱 Course Plan

點擊下方連結查看詳細授課大綱
Click the link below to view the detailed course plan

查看授課大綱 View Course Plan

相似課程 Related Courses

無相似課程 No related courses found

課程資訊 Course Information

基本資料 Basic Information

  • 課程代碼 Course Code: 5442
  • 學分 Credit: 3-3
  • 上課時間 Course Time:
    Wednesday/2,3,4[ST527]
  • 授課教師 Teacher:
    陳宏銘/邱百誼
  • 修課班級 Class:
    理學院3-碩(應數系開)
  • 選課備註 Memo:
    學年課程,上學期達D(50分)可修下學期。應數系大三以上可作為選修專題或系選修課程。
選課狀態 Enrollment Status

目前選課人數 Current Enrollment: 23 人

交換生/外籍生選課登記

請點選上方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by clicking the button above.