1595 - 統計軟體

Computer Packages for Statistics

教育目標 Course Target

因應並針對統計軟體在當今實際產業或是研學單位在時代中的許多推演與程式應用發展,並在大數據時代和數據科學的連結,統計軟體的課程概述在此課程上進一步調整如下:

1. 本課程主要目標在於介紹一些在業界或學術界常用之統計軟體,因應大數據時代統計分析的需求及應用。軟體包跨R、SAS、以及一部分的SQL
2. 我們課程將著重於這些軟體包括R、SAS。課程主要涵蓋如何利用這些軟體所提供之相關程式功能
(a) 進行資料處理
(b) 軟體提供的重要之統計方法來瞭解資料分析。
(c) 相關數據科學遇到的軟體應用
3. 課程主要進行R和SAS,其中內容上會以軟體基本指令、資料處理、數據方法分析為主軸。
with R: basic commands, programming for data, graphics and visualization
with SAS: basic procedures for data handling and preparation, basic data analysis and modeling

In response to and in response to the development of many deductions and program applications of statistical software in today's actual industries or research institutions, and in connection with data science in the era of big data, the course overview of statistical software has been further adjusted for this course as follows:

1. The main goal of this course is to introduce some statistical software commonly used in industry or academia to meet the needs and applications of statistical analysis in the era of big data. Packages span R, SAS, and some SQL
2. Our courses will focus on these software including R and SAS. The course mainly covers how to use the relevant program functions provided by these software
(a) To carry out data processing
(b) The software provides important statistical methods to understand data analysis.
(c) Software applications related to data science
3. The course mainly covers R and SAS, and the content will focus on basic software instructions, data processing, and data method analysis.
with R: basic commands, programming for data, graphics and visualization
with SAS: basic procedures for data handling and preparation, basic data analysis and modeling

課程概述 Course Description

本課程主要目標在於介紹一些在業界或學術界常用之統計軟體,這些軟體包括Splus、SAS、SPSS以及Excel。課程主要涵蓋如何利用這些軟體所提供之相關統計方法來做實際資料分析。

The main goal of this course is to introduce some statistical software commonly used in industry or academia, including Splus, SAS, SPSS and Excel. The course mainly covers how to use the relevant statistical methods provided by these software to conduct actual data analysis.

參考書目 Reference Books

1. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data 1st Edition
2. R graphics cookbook: Practical Recipes for Visualizing data
3. Deep learning with R
4. Materials on SAS help and support center
5. SAS online documents

1. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data 1st Edition
2. R graphics cookbook: Practical Recipes for Visualizing data
3. Deep learning with R
4. Materials on SAS help and support center
5. SAS online documents

評分方式 Grading

評分項目
Grading Method
配分比例
Percentage
說明
Description
Attendance (出席及學習態度)
Attendance (attendance and learning attitude)
10
課堂練習及課後作業
Class exercises and homework
30
Midterm Exam
Midterm Exam
30
Final: Take Home exam and Short report
Final: Take Home exam and Short report
30

授課大綱 Course Plan

點擊下方連結查看詳細授課大綱
Click the link below to view the detailed course plan

查看授課大綱 View Course Plan

相似課程 Related Courses

課程代碼
Course Code
課程名稱
Course Name
授課教師
Instructor
時間地點
Time & Room
學分
Credits
操作
Actions
選修-1020
資工系3,4 謝宗澔 二/2,3,4[C215] 3-0 詳細資訊 Details

課程資訊 Course Information

基本資料 Basic Information

  • 課程代碼 Course Code: 1595
  • 學分 Credit: 3-0
  • 上課時間 Course Time:
    Wednesday/6,7,8[M442]
  • 授課教師 Teacher:
    黃愉閔
  • 修課班級 Class:
    統計系2-4
  • 選課備註 Memo:
    大數據資料群組(110-114適用)
選課狀態 Enrollment Status

目前選課人數 Current Enrollment: 39 人

交換生/外籍生選課登記

請點選上方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by clicking the button above.