Home
工學院
course information of 113 - 2 | 5515 Robotic Navigation and Exploration(機器導航與探索)

5515 - 機器導航與探索 Robotic Navigation and Exploration


教育目標 Course Target

本課程模組分為三個主要的部分,分別為即時追蹤與地圖建置(SLAM)、基於機器學習之場景理解(Scene Understanding)與探索導航的動作控制(Action Control)。即時追蹤與地圖建置部分包含機率模型與相機模型等理論基礎,也包含基於深度學習之RGB-based的3DSLAM方法。場景理解的部分包含機器學習的基本概念,再帶到深度學習的技術與目前的物件偵測與語意切割技術。動作控制的部分則包含路徑規劃與導航演算法,並帶入強化學習的概念來引導行進的路徑。This course module is divided into three main parts, namely real-time tracking and map construction (SLAM), scene understanding based on machine learning and action control based on exploration navigation. The real-time tracking and map construction part includes theoretical basis such as probability model and camera model, and also includes RGB-based 3DSLAM method based on deep learning. The part of the understanding of the scene includes the basic concepts of machine learning, which then brings to the technology of in-depth learning and current object detection and linguistic cutting. The action control part includes path planning and navigation algorithms, and brings in the concept of reinforcement learning to guide the path forward.


參考書目 Reference Books

● Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An
Introduction, Second Edition, MIT Press, Cambridge, MA, 2018
● Sebastian Thrun, Wolfram Burgard, and Dieter Fox , Probabilistic Robotics,2005. (Intelligent Robotics and Autonomous Agents series)
● Kevin Murphy, Machine Learning: A Probabilistic Perspective.
● Daphne Koller and Nir Friedman, Probabilistic Graphical Models: Principles and Techniques, 1st Edition, 2009.
● Ian Goodfellow, Yoshua Bengio and Aaron Courville: Deep Learning.

● Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An
Introduction, Second Edition, MIT Press, Cambridge, MA, 2018
● Sebastian Thrun, Wolfram Burgard, and Dieter Fox , Probabilistic Robotics, 2005. (Intelligent Robotics and Autonomous Agents series)
● Kevin Murphy, Machine Learning: A Probabilistic Perspective.
● Daphne Koller and Nir Friedman, Probabilistic Graphical Models: Principles and Techniques, 1st Edition, 2009.
● Ian Goodfellow, Yoshua Bengio and Aaron Courville: Deep Learning.


評分方式 Grading

評分項目 Grading Method 配分比例 Grading percentage 說明 Description
作業作業
Action
60 (15% for each HW)
論文閱讀報告論文閱讀報告
Article reading report
10
自走車期末專題(含實作、書面報告、口頭報告)自走車期末專題(含實作、書面報告、口頭報告)
Automobile final topics (including work, written reports, oral reports)
30

授課大綱 Course Plan

Click here to open the course plan. Course Plan
交換生/外籍生選課登記 - 請點選下方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by click the button below.
請先登入才能進行選課登記 Please login first


相似課程 Related Course

很抱歉,沒有符合條件的課程。 Sorry , no courses found.

Course Information

Description

學分 Credit:0-3
上課時間 Course Time:Monday/10,11,12[遠距課程]
授課教師 Teacher:胡敏君/賴俊鳴
修課班級 Class:共選修3,4碩博1,2
選課備註 Memo:教育部補助臺灣大專院校人工智慧學程聯盟,開設學校:國立清華大學,同步遠距上課時間:晚上6:30~9:20。不接受期中考後退選
授課大綱 Course Plan: Open

選課狀態 Attendance

There're now 11 person in the class.
目前選課人數為 11 人。

請先登入才能進行選課登記 Please login first