5515 - 機器導航與探索
Robotic Navigation and Exploration
教育目標 Course Target
本課程模組分為三個主要的部分,分別為即時追蹤與地圖建置(SLAM)、基於機器學習之場景理解(Scene Understanding)與探索導航的動作控制(Action Control)。即時追蹤與地圖建置部分包含機率模型與相機模型等理論基礎,也包含基於深度學習之RGB-based的3DSLAM方法。場景理解的部分包含機器學習的基本概念,再帶到深度學習的技術與目前的物件偵測與語意切割技術。動作控制的部分則包含路徑規劃與導航演算法,並帶入強化學習的概念來引導行進的路徑。
This course module is divided into three main parts, namely real-time tracking and map construction (SLAM), machine learning-based scene understanding (Scene Understanding), and exploration navigation action control (Action Control). The real-time tracking and map construction part includes theoretical foundations such as probability models and camera models, as well as the RGB-based 3DSLAM method based on deep learning. The scene understanding part includes the basic concepts of machine learning, and then brings to the deep learning technology and the current object detection and semantic segmentation technology. The action control part includes path planning and navigation algorithms, and brings in the concept of reinforcement learning to guide the path of travel.
參考書目 Reference Books
● Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An
Introduction, Second Edition, MIT Press, Cambridge, MA, 2018
● Sebastian Thrun, Wolfram Burgard, and Dieter Fox , Probabilistic Robotics,2005. (Intelligent Robotics and Autonomous Agents series)
● Kevin Murphy, Machine Learning: A Probabilistic Perspective.
● Daphne Koller and Nir Friedman, Probabilistic Graphical Models: Principles and Techniques, 1st Edition, 2009.
● Ian Goodfellow, Yoshua Bengio and Aaron Courville: Deep Learning.
● Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An
Introduction, Second Edition, MIT Press, Cambridge, MA, 2018
● Sebastian Thrun, Wolfram Burgard, and Dieter Fox, Probabilistic Robotics, 2005. (Intelligent Robotics and Autonomous Agents series)
● Kevin Murphy, Machine Learning: A Probabilistic Perspective.
● Daphne Koller and Nir Friedman, Probabilistic Graphical Models: Principles and Techniques, 1st Edition, 2009.
● Ian Goodfellow, Yoshua Bengio and Aaron Courville: Deep Learning.
評分方式 Grading
評分項目 Grading Method |
配分比例 Percentage |
說明 Description |
---|---|---|
作業 Homework |
60 | (15% for each HW) |
論文閱讀報告 Paper Reading Report |
10 | |
自走車期末專題(含實作、書面報告、口頭報告) Final project on self-propelled vehicles (including implementation, written reports, and oral reports) |
30 |
授課大綱 Course Plan
點擊下方連結查看詳細授課大綱
Click the link below to view the detailed course plan
相似課程 Related Courses
無相似課程 No related courses found
課程資訊 Course Information
基本資料 Basic Information
- 課程代碼 Course Code: 5515
- 學分 Credit: 0-3
-
上課時間 Course Time:Monday/10,11,12[遠距課程]
-
授課教師 Teacher:胡敏君/賴俊鳴
-
修課班級 Class:共選修3,4碩博1,2
-
選課備註 Memo:教育部補助臺灣大專院校人工智慧學程聯盟,開設學校:國立清華大學,同步遠距上課時間:晚上6:30~9:20。不接受期中考後退選
交換生/外籍生選課登記
請點選上方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by clicking the button above.