1695 - 教育大數據分析工具與應用
Educational Big Data Analysis Packages and Applications
教育目標 Course Target
大數據為科學與教育的發展提供了前所未有的契機與挑戰,未來人類知識的建構、發展及適應,均仰賴資料的蒐集、挖掘、分析、詮釋及創新。隨著大數據時代的到來,如欲在各領域保持領先地位,當務之急是認知大數據的內涵與應用、妥善的應用大數據,以改善我們的生活、學生的學習,以及提高社會與國家的競爭力。能以務實且正向的態度看待資料革命,方能讓俯拾即是的大數據資料發揮其價值。
為達成前揭目標,本研究的課程教材主題包含三大主題:1.大數據的理論與實務;2.大數據案例分析與研究設計;3.大數據分析的方法論議題。首先,「大數據的理論與實務」的教材單元包含「大數據概述」、「大數據的應用」、「大數據分析的教育意義」。其次,「大數據案例分析與研究設計」則包含了「次級資料分析概述」、「國內外教育大型資料庫介紹與案例分析」、「教育大數據案例分析」等學習單元。最後,「大數據分析的方法論議題」則包含「大數據分析的調查設計、抽樣設計、加權議題」、「潛在變項」、「信度與效度」、「結構方程模式」及「多層次分析」等單元。
Big data provides unprecedented opportunities and challenges for the development of science and education. The construction, development and adaptation of human knowledge in the future will all rely on the collection, mining, analysis, interpretation and innovation of data. With the advent of the big data era, if we want to maintain a leading position in various fields, it is imperative to understand the connotation and application of big data and properly apply big data to improve our lives, students' learning, and enhance the competitiveness of society and the country. Only by looking at the data revolution with a pragmatic and positive attitude can the value of the readily available big data be unleashed.
In order to achieve the goals revealed earlier, the course textbook topics of this study include three major topics: 1. The theory and practice of big data; 2. Big data case analysis and research design; 3. Methodological issues of big data analysis. First of all, the teaching material unit of "The Theory and Practice of Big Data" includes "Overview of Big Data", "Application of Big Data", and "Educational Significance of Big Data Analysis". Secondly, "Big Data Case Analysis and Research Design" includes learning units such as "Overview of Secondary Data Analysis", "Introduction and Case Analysis of Large-Scale Education Databases at Home and Abroad", "Education Big Data Case Analysis". Finally, "Methodological Issues in Big Data Analysis" includes units such as "Survey Design, Sampling Design, Weighting Issues in Big Data Analysis", "Latent Variables", "Reliability and Validity", "Structural Equation Model" and "Multi-Level Analysis".
參考書目 Reference Books
(1) 教師自編教材
(2) 邱皓政(2012)。量化研究法(三):測驗原理與量表發展技術。臺北市:雙葉書廊。
(1) Teachers’ own teaching materials
(2) Qiu Haozheng (2012). Quantitative research methods (3): Test principles and scale development techniques. Taipei City: Shuangye Bookstore.
評分方式 Grading
評分項目 Grading Method |
配分比例 Percentage |
說明 Description |
---|---|---|
學習契約/專題實作 Learning contract/topic implementation |
40 | 透過個人的理論觸覺挖掘蘊含於教育大數據中的潛在變項與邏輯結構,形成問題意識。 (2) 每位同學選擇一自身關心的教育議題,能正確解讀資料、熟練地使用課堂所學內容進行深度探勘與結果詮釋,且須於期末於課堂公開發表。簡報內容包含:緒論、研究方法、研究結果與討論。 |
小組合作探究任務 Group collaborative inquiry tasks |
30 | 以3至5人為一組,針對課程所規劃的案例與議題,進行合作問題解決。 |
課堂參與、線上討論 Class participation, online discussions |
30 | 參與課堂討論、線上學習社群之表現情形、反思札記與檔案評量 |
授課大綱 Course Plan
點擊下方連結查看詳細授課大綱
Click the link below to view the detailed course plan
相似課程 Related Courses
無相似課程 No related courses found
課程資訊 Course Information
基本資料 Basic Information
- 課程代碼 Course Code: 1695
- 學分 Credit: 0-2
-
上課時間 Course Time:Thursday/11,12[ST020]
-
授課教師 Teacher:巫博瀚
-
修課班級 Class:共選修1-4(社科院開)
-
選課備註 Memo:「教育大數據微學程」選修課程
交換生/外籍生選課登記
請點選上方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by clicking the button above.