1115 - AI模型建立實務
AI Model Building Practice
教育目標 Course Target
課程概述(系所共同性目標) Course Description
因應先進工業4.0(Industry 4.0)的技術趨勢,我國政府打造以「創新、就業、分配」為核心價值,追求永續發展的經濟新模式,並透過「連結未來、連結全球、連結在地」三大策略,激發產業創新風氣與能量。政府提出「智慧機械」、「亞洲‧矽谷」、「綠能科技」、「生醫產業」、「國防產業」、「新農業」及「循環經濟」等5+2產業創新計畫,作為驅動台灣下世代產業成長的核心,為經濟成長注入新動能。
所謂「智慧機械」就是整合工業4.0技術元素,使其具備故障預測、精度補償、自動參數設定與自動排程等智慧化功能,其中故障預測是指利用各項感測器感知設備關鍵模組之運轉狀態,並設法從中找出設備發生故障前的先期徵兆,提早進行預防保養,降低設備非預期性故障所造成的龐大損失;精度補償則是透過各式感測器監測整個生產過程,並據此調整製程參數、補償加工誤差、推估加工品質等,最終達到生產效能提升、加工品質確保之目的。透過長期的數據收集,將大數據分析概念結合機械振動知識,透過類神經網路的方式建立機台健康指標模型,利用model-base之方式來進行機台全面性的監控,已達到降低無預警故障率、有效排程維修及減少備料問題。
課程規劃(教師個別目標) Course Plan
本課程各主題皆與邁向智慧機械所需的關鍵技術相關,學員透過課程可學習
1. 前言及問題性開題
2. 商用Matlab軟體技術+數據處理+大數據分析技術+AI模型建立技術
3. 設備監測原理+監測系統架構說明與設計流程+如何建置設備狀態監測系統
4. 感測與訊號處理技術(實務操作)
5. 振動原理+機械設備預兆診斷方法與原理
6. 運用訊號處理方法與預兆診斷方法等監控重要機械設備與推估加工品質
7. 透過實例說明強化解決設備異常問題之實務能力
Course Overview (Common Objectives of the Department) Course Description
In response to the technological trends of Industry 4.0, the Chinese government has created a new economic model with "innovation, employment, distribution" as its core values, pursuing sustainable development, and stimulated the atmosphere and energy of industrial innovation through the three major strategies of "connecting the future, connecting the world, and connecting locally". The government has proposed 5+2 industrial innovation plans such as "Smart Machinery", "Silicon Valley Asia", "Green Energy Technology", "Biomedical Industry", "Defense Industry", "New Agriculture" and "Circular Economy", as the core of driving Taiwan's next-generation industrial growth and injecting new momentum into economic growth.
The so-called "smart machinery" is the integration of Industry 4.0 technical elements to enable it to have intelligent functions such as fault prediction, accuracy compensation, automatic parameter setting, and automatic scheduling. Fault prediction refers to using various sensors to sense the operating status of key modules of the equipment and trying to find out what happened before the equipment fails. Early signs can be detected and preventive maintenance can be carried out in advance to reduce the huge losses caused by unexpected equipment failures. Accuracy compensation monitors the entire production process through various sensors, and adjusts process parameters accordingly, compensates for processing errors, estimates processing quality, etc., and ultimately achieves the purpose of improving production efficiency and ensuring processing quality. Through long-term data collection, the big data analysis concept is combined with mechanical vibration knowledge, a machine health indicator model is established through a neural network-like method, and the model-base method is used to conduct comprehensive monitoring of the machine. This has achieved the goal of reducing the failure rate without warning, effectively scheduling maintenance, and reducing material preparation problems.
Course Plan (teacher’s individual goals) Course Plan
Each topic in this course is related to the key technologies required to move towards smart machines. Students can learn through the course
1. Preface and question opening
2. Commercial Matlab software technology + data processing + big data analysis technology + AI model building technology
3. Equipment monitoring principle + Monitoring system architecture description and design process + How to build an equipment status monitoring system
4. Sensing and signal processing technology (practical operation)
5. Vibration principle + mechanical equipment omen diagnosis method and principle
6. Use signal processing methods and predictive diagnosis methods to monitor important mechanical equipment and estimate processing quality
7. Strengthen the practical ability to solve equipment abnormal problems through practical examples.
參考書目 Reference Books
教材編選:■自編教材 □教科書作者提供
教學方法:■投影片講述 ■板書講述 ■實例示範 ■操作練習
Textbook compilation and selection: ■Self-edited textbooks □ Provided by textbook authors
Teaching methods: ■Powerpoint presentation ■Blackboard presentation ■Examples and demonstrations ■Operation exercises
評分方式 Grading
評分項目 Grading Method |
配分比例 Percentage |
說明 Description |
---|---|---|
期中+期末 考 Mid-term + final exam |
20 | |
期中小考+期末小考 Mid-term quiz + final quiz |
20 | |
點名+專題作業 Roll call + special assignment |
20 | |
期末專題 Final topic |
40 |
授課大綱 Course Plan
點擊下方連結查看詳細授課大綱
Click the link below to view the detailed course plan
相似課程 Related Courses
無相似課程 No related courses found
課程資訊 Course Information
基本資料 Basic Information
- 課程代碼 Course Code: 1115
- 學分 Credit: 0-3
-
上課時間 Course Time:Monday/2,3,4[ST023]
-
授課教師 Teacher:苗新元
-
修課班級 Class:電機系3,4
交換生/外籍生選課登記
請點選上方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by clicking the button above.