0743 - 機率與統計

Probability and Statistics

教育目標 Course Target

1. Experiments, Models, and Probabilities
1) Applying Set Theory to Probability
2) Conditional Probability
3) Independence

2. Basics of Random Variables
1) Definitions
2) Probability Mass Function (PMF)
3) Families of Discrete Random Variables
4) Cumulative Distribution Function (CDF)
5) Probability Density Function (PDF)
6) Families of Continuous Random Variables

3. Random Variables and Expected Value
1) Conditional Probability Mass/Density Function
2) Probability Models of Derived Random Variables
3) Variance and Standard Deviation
4) Expected Value of a Derived Random Variable

4. Multiple Random Variables
1) Joint Cumulative Distribution Function
2) Joint Probability Mass/Density Function
3) Marginal PMF/PDF
4) Functions of Two Random Variables
5) Conditioning by a Random Variable
6) Independent Random Variables

5. Sums of Random Variables
1) Expected Values of Sums
2) PDF of the Sum of Two Random Variables
3) Moment Generating Functions
4) MGF of the Sum of Independent Random Variables
5) Random Sums of Independent Random Variables
6) Central Limit Theorem
7) Law of Large Numbers

1. Experiments, Models, and Probabilities
1) Applying Set Theory to Probability
2) Conditional Probability
3) Independence

2. Basics of Random Variables
1) Definitions
2) Probability Mass Function (PMF)
3) Families of Discrete Random Variables
4) Cumulative Distribution Function (CDF)
5) Probability Density Function (PDF)
6) Families of Continuous Random Variables

3. Random Variables and Expected Value
1) Conditional Probability Mass/Density Function
2) Probability Models of Derived Random Variables
3) Variance and Standard Deviation
4) Expected Value of a Derived Random Variable

4. Multiple Random Variables
1) Joint Cumulative Distribution Function
2) Joint Probability Mass/Density Function
3) Marginal PMF/PDF
4) Functions of Two Random Variables
5) Conditioning by a Random Variable
6) Independent Random Variables

5. Sums of Random Variables
1) Expected Values ​​of Sums
2) PDF of the Sum of Two Random Variables
3) Moment Generating Functions
4) MGF of the Sum of Independent Random Variables
5) Random Sums of Independent Random Variables
6) Central Limit Theorem
7) Law of Large Numbers

參考書目 Reference Books

Probability and Stochastic Processes - A Friendly Introduction for Electrical and Computer Engineers," Second Edition

Probability and Stochastic Processes - A Friendly Introduction for Electrical and Computer Engineers," Second Edition

評分方式 Grading

評分項目
Grading Method
配分比例
Percentage
說明
Description
課堂參與及作業
Class participation and work
50
期中課程評量成績
Midterm course evaluation results
25
期末課程評量成績
Final course evaluation results
25

授課大綱 Course Plan

點擊下方連結查看詳細授課大綱
Click the link below to view the detailed course plan

查看授課大綱 View Course Plan

相似課程 Related Courses

無相似課程 No related courses found

課程資訊 Course Information

基本資料 Basic Information

  • 課程代碼 Course Code: 0743
  • 學分 Credit: 0-3
  • 上課時間 Course Time:
    Thursday/6,7,8,9,12,13[遠距課程]
  • 授課教師 Teacher:
    葉丙成
  • 修課班級 Class:
    共選修3,4(工學院開)
  • 選課備註 Memo:
    教育部補助臺灣大專院校人工智慧學程聯盟,開設學校:台灣大學,遠距課程,上課時間:週四下午 14:30-17:30 週四晚上 20:00-22:00。
選課狀態 Enrollment Status

目前選課人數 Current Enrollment: 11 人

交換生/外籍生選課登記

請點選上方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by clicking the button above.