Home
工學院
course information of 113 - 2 | 0743 Probability and Statistics(機率與統計)

0743 - 機率與統計 Probability and Statistics


教育目標 Course Target

1. Experiments, Models, and Probabilities 1) Applying Set Theory to Probability 2) Conditional Probability 3) Independence 2. Basics of Random Variables 1) Definitions 2) Probability Mass Function (PMF) 3) Families of Discrete Random Variables 4) Cumulative Distribution Function (CDF) 5) Probability Density Function (PDF) 6) Families of Continuous Random Variables 3. Random Variables and Expected Value 1) Conditional Probability Mass/Density Function 2) Probability Models of Derived Random Variables 3) Variance and Standard Deviation 4) Expected Value of a Derived Random Variable 4. Multiple Random Variables 1) Joint Cumulative Distribution Function 2) Joint Probability Mass/Density Function 3) Marginal PMF/PDF 4) Functions of Two Random Variables 5) Conditioning by a Random Variable 6) Independent Random Variables 5. Sums of Random Variables 1) Expected Values of Sums 2) PDF of the Sum of Two Random Variables 3) Moment Generating Functions 4) MGF of the Sum of Independent Random Variables 5) Random Sums of Independent Random Variables 6) Central Limit Theorem 7) Law of Large Numbers 1. Experiments, Models, and Probabilities 1) Applying Set Theory to Probability 2) Conditional Probability 3) Independence 2. Basics of Random Variables 1) Definitions 2) Probability Mass Function (PMF) 3) Families of Discrete Random Variables 4) Cumulative Distribution Function (CDF) 5) Probability Density Function (PDF) 6) Families of Continuous Random Variables 3. Random Variables and Expected Value 1) Conditional Probability Mass/Density Function 2) Probability Models of Derived Random Variables 3) Variance and Standard Deviation 4) Expected Value of a Derived Random Variable 4. Multiple Random Variables 1) Joint Cumulative Distribution Function 2) Joint Probability Mass/Density Function 3) Marginal PMF/PDF 4) Functions of Two Random Variables 5) Conditioning by a Random Variable 6) Independent Random Variables 5. Sums of Random Variables 1) Expected Values ​​of Sums 2) PDF of the Sum of Two Random Variables 3) Moment Generating Functions 4) MGF of the Sum of Independent Random Variables 5) Random Sums of Independent Random Variables 6) Central Limit Theorem 7) Law of Large Numbers


參考書目 Reference Books

Probability and Stochastic Processes - A Friendly Introduction for Electrical and Computer Engineers," Second Edition
Probability and Stochastic Processes - A Friendly Introduction for Electrical and Computer Engineers," Second Edition


評分方式 Grading

評分項目 Grading Method 配分比例 Grading percentage 說明 Description
課堂參與及作業課堂參與及作業
Class participation and work
50
期中課程評量成績期中課程評量成績
Midterm course evaluation results
25
期末課程評量成績期末課程評量成績
Final course evaluation results
25

授課大綱 Course Plan

Click here to open the course plan. Course Plan
交換生/外籍生選課登記 - 請點選下方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by click the button below.
請先登入才能進行選課登記 Please login first


相似課程 Related Course

很抱歉,沒有符合條件的課程。 Sorry , no courses found.

Course Information

Description

學分 Credit:0-3
上課時間 Course Time:Thursday/6,7,8,9,12,13[遠距課程]
授課教師 Teacher:葉丙成
修課班級 Class:共選修3,4(工學院開)
選課備註 Memo:教育部補助臺灣大專院校人工智慧學程聯盟,開設學校:台灣大學,遠距課程,上課時間:週四下午 14:30-17:30 週四晚上 20:00-22:00。
授課大綱 Course Plan: Open

選課狀態 Attendance

There're now 11 person in the class.
目前選課人數為 11 人。

請先登入才能進行選課登記 Please login first