0476 - 樹莓派的AI應用專題

AI application Topic for Raspberry Pi

教育目標 Course Target

本課程目的在透過人工智慧結合物聯網(AIOT)、腦科學、量子機器學習、磁性系統相位辨識等專題分組實作,訓練同學跨領域應用人工智慧解決物理問題的能力。
本課程內容包括:
一、AIOT(含自駕車)專題
1. 3D繪圖與列印
2. 樹莓派控制板與Linux作業系統
3. 感測器,GPIO與藍芽無線控制
4. Python程式設計
5. OpenCV電腦視覺程式應用
6. Tensorflow、Keras 機器學習人工智慧應用
7. 人工智慧結合物聯網(AIOT)主題實作
二、腦科學專題
1. 大腦影像資料結構
2. 以卷積神經網路進行大腦影像處理:超大型影像拼接(stitching)、神經元切割(segmentation)與追跡(tracing)
3. 以非監督式學習進行大腦連結體網路分析
4. 上述腦科學演算法之整合使用者介面
三、量子機器學習專題
1.量子計算基礎-量子線路模型
2.將古典數據轉化成量子態中的數據
3.量子演算法-量子傅立葉變換、量子搜尋
4.量子神經網絡,量子主成分分析算法,量子支持向量機
5.實作:量子圖像辨識 ,利用量子電腦模擬分子的基態能量
四、磁性系統相位辨識
1.磁性模型
2.蒙地卡羅模擬
3.深度學習方法: 卷積神經網路(CNN)、自编碼器(autoencoder)
4.使用深度學習進行相位辨識

The purpose of this course is to train students’ ability to apply artificial intelligence across fields to solve physical problems through artificial intelligence combined with the Internet of Things (AIOT), brain science, quantum machine learning, magnetic system phase identification and other topic group practice.
Contents of this course include:
1. AIOT (including self-driving cars) special topic
1. 3D drawing and printing
2. Raspberry Pi control board and Linux operating system
3. Sensor, GPIO and Bluetooth wireless control
4. Python Programming
5. OpenCV computer vision program application
6. Tensorflow, Keras machine learning artificial intelligence applications
7. Artificial intelligence combined with Internet of Things (AIOT) theme implementation
2. Brain science topics
1. Brain image data structure
2. Use convolutional neural networks for brain image processing: ultra-large image stitching, neuron segmentation and tracing
3. Unsupervised learning for brain connectivity network analysis
4. Integrated user interface of the above brain science algorithm
3. Special topic on quantum machine learning
1.Basics of quantum computing-quantum circuit model
2. Convert classical data into data in quantum state
3. Quantum algorithm-quantum Fourier transform, quantum search
4. Quantum neural network, quantum principal component analysis algorithm, quantum support vector machine
5. Implementation: Quantum image recognition, using quantum computers to simulate the ground state energy of molecules
4. Phase identification of magnetic system
1. Magnetic model
2. Monte Carlo simulation
3. Deep learning methods: convolutional neural network (CNN), autoencoder (autoencoder)
4. Use deep learning for phase identification

參考書目 Reference Books

教學講義
https://physexp.thu.edu.tw/~AP/YC/AIcar/

Teaching handouts
https://physexp.thu.edu.tw/~AP/YC/AIcar/

評分方式 Grading

評分項目
Grading Method
配分比例
Percentage
說明
Description
期末考
final exam
100

授課大綱 Course Plan

點擊下方連結查看詳細授課大綱
Click the link below to view the detailed course plan

查看授課大綱 View Course Plan

相似課程 Related Courses

無相似課程 No related courses found

課程資訊 Course Information

基本資料 Basic Information

  • 課程代碼 Course Code: 0476
  • 學分 Credit: 0-3
  • 上課時間 Course Time:
    Thursday/7,8,9[ST205]
  • 授課教師 Teacher:
    陳永忠
  • 修課班級 Class:
    應物系2-4
  • 選課備註 Memo:
    II類選修
選課狀態 Enrollment Status

目前選課人數 Current Enrollment: 14 人

交換生/外籍生選課登記

請點選上方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by clicking the button above.