將資料科學所常用的各類「模型」之相關數學、統計知識做一個通盤的介紹,以俯視的角度,來抓住各領域常用模型之間的關聯,並探討現實中不同問題的分析方式。然後將它們整合應用到「品管統計方法」(Statistical Quality Control; SQC),以及以「數據驅動」為核心策略的「網路產品生命週期管理」等課題上。Make a synopsis introduction to the mathematical and statistical knowledge of various "models" commonly used in data science, and grasp the relationship between commonly used models in various fields from a downward perspective, and explore the analysis methods of different problems in reality. Then they are integrated into the "Statistical Quality Control; SQC" and the "Internet Product Lifecycle Management" with "data drive" as the core strategy.
王心薇譯, “資料科學的建模基礎:別急著coding!你知道模型的陷阱嗎?”, 旗標出版社, 2021/06.
Wang Xinwei translated, "The modeling foundation of data science: Don't be rushing to coding! Do you know the trap of the model?", Qipin Publishing House, 2021/06.
評分項目 Grading Method | 配分比例 Grading percentage | 說明 Description |
---|---|---|
平時出席平時出席 Attendance at ordinary times |
20 | 著重課堂上參與提問及討論。 |
報中報告報中報告 Report in progress |
30 | 以微軟Excel工具,來分析指定的品管作業。 |
期末報告期末報告 Final report |
50 | 以知名的「網路產品」,例如:Netflex、Google、… 為研究對象,蒐集研讀從網路及文獻上關於本課程 “以「數據驅動」為核心策略的「網路產品生命週期管理」” 所探討的各項議題。 |