Home
社會科學院
course information of 113 - 1 | 1695 Data Visualization(資料視覺化)

1695 - 資料視覺化 Data Visualization


教育目標 Course Target

本課程主要目標為使用 R 軟體與真實社會科學調查的資料,透過資料視覺化分析來展現資料中的資訊。課程前半學期會先介紹圖像理論的概念,再透過實際操作與具體設計並畫出統計圖像、詮釋統計圖像的經驗,有效率地理解探索性資料視覺化。課程後半學期,會介紹如何將大多數研究者感興趣、卻無法實際量測到的概念或態度,使用視覺化的模型進行分析。完成課程後,學生將能夠使用 R 語言繪製圖表,並進行潛在變項分析與解釋分析結果。完成課程後,學生將能夠使用 R 語言繪製統計圖表,並進行潛在變項分析與解釋分析結果。The main goal of this course is to use R software and real social science survey data to present the information in the data through data visual analysis. In the first half of the course, the concept of image theory will be introduced, and then through practical operation and specific design and experience in drawing and interpreting statistical images, exploratory data visualization can be effectively understood. In the second half of the course, we will introduce how to use visual models to analyze concepts or attitudes that most researchers are interested in but cannot actually measure. Upon completion of the course, students will be able to use R to draw graphs, perform latent variable analysis and interpret analysis results. After completing the course, students will be able to use R to draw statistical graphs, perform latent variable analysis and interpret analysis results.


參考書目 Reference Books

(1) Kieran Healy, 2019, Data Visualization: A Practical Introduction, Princeton University Press: Princeton and Oxford.

(2) Antony Unwin, 2015, Graphical Data Analysis with R, CRC Press.

(3) W. Holmes Finch, Brian F. French, 2015, Latent Variable Modeling with R, Routledge.

(4) A. Alexander Beaujean, 2014, Latent Variable Modeling Using R: A Step-by-Step Guide, Routledge.

(1) Kieran Healy, 2019, Data Visualization: A Practical Introduction, Princeton University Press: Princeton and Oxford.

(2) Antony Unwin, 2015, Graphical Data Analysis with R, CRC Press.

(3) W. Holmes Finch, Brian F. French, 2015, Latent Variable Modeling with R, Routledge.

(4) A. Alexander Beaujean, 2014, Latent Variable Modeling Using R: A Step-by-Step Guide, Routledge.


評分方式 Grading

評分項目 Grading Method 配分比例 Grading percentage 說明 Description
課堂參與出席課堂參與出席
class participation attendance
15 每週上課點名,期末出席成績由 R 軟體隨機選出五週計分。若需請假,請將請假證明寄至教師 email 或於學生資訊系統請假。
平日作業及小考平日作業及小考
Daily homework and quizzes
25 包含隨堂電腦軟體操作、輸出及對輸出結果的詮釋。
期中口頭小組報告期中口頭小組報告
Midterm oral group report
15 包含關於 R 軟體的操作與分析內容的詮釋;請針對所選資料之研究議題做出之視覺化分析與詮釋,每位小組成員都須上台報告,若未報告或未出席則以零分計。
期中書面小組報告期中書面小組報告
Midterm written group report
15 包含關於 R 軟體的操作與分析內容的詮釋;請針對所選資料之研究議題做出之視覺化分析與詮釋,引用及書寫格式請比照期刊撰稿體例,若有抄襲之情事以零分計。

授課大綱 Course Plan

Click here to open the course plan. Course Plan
交換生/外籍生選課登記 - 請點選下方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by click the button below.
請先登入才能進行選課登記 Please login first


相似課程 Related Course

選修-1173 [Taught in English] Data Visualization Analysis / 資料視覺化分析 (共選修1-4(管院開),授課教師:金泰星,一/6,7,8[M009])
選修-5573 Data Visualization Analysis and Machine Learning / 資料視覺化分析與機器學習 (工工碩博1,2,授課教師:劉士嘉,五/2,3,4[IEⅡ102])

Course Information

Description

學分 Credit:3-0
上課時間 Course Time:Tuesday/5,6,7[M007]
授課教師 Teacher:陳語婕
修課班級 Class:共選修1-4(社科院開)
選課備註 Memo:「教育大數據微學程」選修課程
授課大綱 Course Plan: Open

選課狀態 Attendance

There're now 27 person in the class.
目前選課人數為 27 人。

請先登入才能進行選課登記 Please login first