1594 - 統計軟體
Computer Packages for Statistics
教育目標 Course Target
因應並針對統計軟體在當今實際產業或是研學單位在時代中的許多推演與程式應用發展,並在大數據時代和數據科學的連結,統計軟體的課程概述在此課程上進一步調整如下:
1. 本課程主要目標在於介紹一些在業界或學術界常用之統計軟體,因應大數據時代統計分析的需求及應用。軟體包跨R、SAS、以及一部分的SQL
2. 我們課程將著重於這些軟體包括R、SAS。課程主要涵蓋如何利用這些軟體所提供之相關程式功能
(a) 進行資料處理
(b) 軟體提供的重要之統計方法來瞭解資料分析。
(c) 相關數據科學遇到的軟體應用
3. 課程主要進行R和SAS,其中內容上會以軟體基本指令、資料處理、數據方法分析為主軸。
with R: basic commands, programming for data, graphics and visualization, TensorFlow for deep learning
with SAS: basic procedures for data handling and preparation, basic data analysis and modeling
Due to the many deductions and programming application developments in today's international industry or research institutions in the era, and the links between large data era and data science, the course overview of the course of the statistical software is further adjusted as follows:
1. The main purpose of this course is to introduce some commonly used statistical software in the industry or academic world, as a result of the needs and applications of large-scale contemporary statistical analysis. Software packages span R, SAS, and some SQL
2. Our courses will focus on these software including R and SAS. The course mainly covers how to use the relevant program functions provided by these software
(a) Perform data processing
(b) Important statistical methods provided by the software to understand data analysis.
(c) Software applications encountered by related data science
3. The course mainly involves R and SAS, and the content will be based on basic software instructions, data processing, and data analysis.
with R: basic commands, programming for data, graphics and visualization, TensorFlow for deep learning
with SAS: basic procedures for data handling and preparation, basic data analysis and modeling
課程概述 Course Description
本課程主要目標在於介紹一些在業界或學術界常用之統計軟體,這些軟體包括Splus、SAS、SPSS以及Excel。課程主要涵蓋如何利用這些軟體所提供之相關統計方法來做實際資料分析。
The main purpose of this course is to introduce some commonly used statistical software in the industry or academic world, including Splus, SAS, SPSS and Excel. The course mainly covers how to use the relevant statistical methods provided by these software to perform actual data analysis.
參考書目 Reference Books
1. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data 1st Edition
2. R graphics cookbook: Practical Recipes for Visualizing data
3. Deep learning with R
4. Materials on SAS help and support center
5. SAS online documents
1. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data 1st Edition
2. R graphics cookbook: Practical Recipes for Visualizing data
3. Deep learning with R
4. Materials on SAS help and support center
5. SAS online documents
評分方式 Grading
評分項目 Grading Method |
配分比例 Percentage |
說明 Description |
---|---|---|
Attendance Attendance |
10 | |
課堂練習及課後作業 Classroom practice and post-school operation |
30 | |
Midterm Exam Midterm Exam |
30 | |
Final Exam (含自主學習之加分) Final Exam (including bonus points for independent learning) |
30 |
授課大綱 Course Plan
點擊下方連結查看詳細授課大綱
Click the link below to view the detailed course plan
相似課程 Related Courses
無相似課程 No related courses found
課程資訊 Course Information
基本資料 Basic Information
- 課程代碼 Course Code: 1594
- 學分 Credit: 3-0
-
上課時間 Course Time:Wednesday/6,7,8[M442]
-
授課教師 Teacher:黃愉閔
-
修課班級 Class:統計系2-4
-
選課備註 Memo:大數據資料群組(109-113適用)
交換生/外籍生選課登記
請點選上方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by clicking the button above.