複分析是高等數學的基礎與應用科學的主要分析工具, 本課程「複變數函數論」討論複數系上之解析函數,以其表現、微分與積分、級數、留數 (residual) 理論與保角變換 (conformal mapping) 為主要內容, 以奠定複分析的基礎。課程之進行除理論推導與分析外,並著重在物理與工程之應用。Complex analysis is the main analytical tool in the basic and applied science of advanced mathematics. This course "Complex Functions" discusses the analytical functions on complex systems, based on their representation, differential and scores, grades, and residual theory and guarantee. Conformal mapping is the main content to lay the foundation for complex analysis. In addition to theoretical guidance and analysis, the course is also focused on the application of physics and engineering.
Noton 講義:https://www.notion.so/working-2ba67b9a9b084cdcb994f587b32ffdfe?pvs=4
[英文課本,主要課本]
J. H. Mathews and R.W. Howell, Complex Analysis, John and Bartlett Publishers, Massachesetts.
Noton's speech: https://www.notion.so/working-2ba67b9a9b084cdcb994f587b32ffdfe?pvs=4
[English courses, main courses]
J. H. Mathews and R.W. Howell, Complex Analysis, John and Bartlett Publishers, Massachesetts.
評分項目 Grading Method | 配分比例 Grading percentage | 說明 Description |
---|---|---|
平時考平時考 Regular exam |
40 | 大約時間:10/7~10/11,12/2~12/6 |
期中考與期末考期中考與期末考 Midterm and final exams |
40 | 時間:11/4~9,12/26~29 |
平時平時 Regular |
20 | 作業、小小考、出席、上課態度等。 |