近代生物資訊學和人工智慧技術快速發展,因此應用程式語言處理和分析生物數據之方法已有重大的進步。本課程的第一主軸將以Python程式語言為基礎,介紹電腦程式的邏輯和模組化結構。本課程的第二個主軸,將使用常見的開源模組進行數值運算、檔案及資料處理、自動化數據分析,並用於解決生物學領域實際會遇到的問題。Modern biological information and artificial intelligence technology have developed rapidly, so there have been significant progress in the methods of using application language to process and analyze biological data. The first main axis of this course will be based on the Python programming language and introduce the logic and modular structure of computer programs. The second main axis of this course will use common source modules for numerical calculation, file and data processing, and automatic data analysis, and will be used to solve problems that are actually encountered in the biology field.
Swaroop CH, A byte of Python, 4 rd ed., https://www.gitbook.com/book/swaroopch/byte-of-
python/details, 2016.
VanderPlas, Jake, Python Data Science Handbook, O’Reilly Media, Inc., 2016.
吳佳諺, Python 一天學會(電子書), https://drive.google.com/open?
id=1Jtbb6AVQnghseCeGrObNwpJlXAYC8HVx
洪錦魁, Python 最強入門邁向數據科學之路, 深智數位, 2019.
石川聡彥, 必學!Python 資料科學‧機器學習最強套件:NumPy, Pandas, Matplotlib, OpenCV,
scikit-learn, tf.Keras, 劉金讓譯, 旗標, 2021.
Swaroop CH, A byte of Python, 4 rd ed., https://www.gitbook.com/book/swaroopch/byte-of-
python/details, 2016.
VanderPlas, Jake, Python Data Science Handbook, O’Reilly Media, Inc., 2016.
Wu Jiahao, Python One Day Learning Meeting (E-book), https://drive.google.com/open?
id=1Jtbb6AVQnghseCeGrObNwpJlXAYC8HVx
Hong Junkui, Python's most powerful path toward data science, Deep Intelligence Digital, 2019.
Ishikawa Hokkien, a must-learn! Python Data Science‧The strongest suite of machine learning: NumPy, Pandas, Matplotlib, OpenCV,
scikit-learn, tf.Keras, Liu Jin Translation, Flag Mark, 2021.
評分項目 Grading Method | 配分比例 Grading percentage | 說明 Description |
---|---|---|
作業及實際操作作業及實際操作 Operation and actual operation |
50 | |
發問及討論發問及討論 Ask and discuss |
20 | |
期末專題及報告期末專題及報告 Final issues and reports |
20 | |
出席出席 Attend |
10 |