針對物理、工程所對應的系統,整合學生在大學所學習的線性代數、微分方程、複變數函數等理論的能力,以線性系統的架構來描述之,設定控制目標並設計對應的控制器來驅動系統達成控制目標。
The course deals with linear spaces, linear operator theory, existence and uniqueness of solutions of differential equations, the fundamental matrix solution, state transition matrix, Lyapunov stability, controllability, observability feedback, pole placement, observers, output feedback. Special topics include Kalman filtering, linear quadratic regulator optimal control, geometric linear control.For systems corresponding to physics and engineering, integrate students' theoretical abilities such as linear algebra, differential equations, complex variable functions, etc. learned in college, describe them with the architecture of linear systems, set control goals and design corresponding controllers to drive them. The system achieves the control objectives.
The course deals with linear spaces, linear operator theory, existence and uniqueness of solutions of differential equations, the fundamental matrix solution, state transition matrix, Lyapunov stability, controllability, observability feedback, pole placement, observers, output feedback. Special topics include Kalman filtering , linear quadratic regulator optimal control, geometric linear control.
1. 授課講義
2. Gene F. Franklin, J. Da Powell, and Abbas Emami-Naeini, Feedback Control of Dynamic Systems, 6th ed., Prentice Hall, 2009.
3. John Doyle, Bruce Francis, and Allen Tannenbaum, Feedback Control Theory, Macmillan Publishing Co., 1990.
1. Lecture Notes
2. Gene F. Franklin, J. Da Powell, and Abbas Emami-Naeini, Feedback Control of Dynamic Systems, 6th ed., Prentice Hall, 2009.
3. John Doyle, Bruce Francis, and Allen Tannenbaum, Feedback Control Theory, Macmillan Publishing Co., 1990.
評分項目 Grading Method | 配分比例 Grading percentage | 說明 Description |
---|---|---|
作業作業 Homework |
40 | 習題 |
期中考期中考 midterm exam |
30 | 自行安排 |
期末報告期末報告 Final report |
30 | 是課程進行,學生可自選主題,提出報告 |