本課程是什麼?本課程的宗旨為培養企管系學生具備「行銷數據分析思維」的素養,目的是訓練學生成為「商務分析師」。本課程不會也不想訓練學生成為資科科學家或資料工程師!其實務目標是讓學生修畢一學期的課程之後,即有能力與資料科學家或資料工程師「對話」。課程會以提升學生對於程式邏輯的理解與跨領域溝通能力為主,期望學生將來能與程式設計師溝通、進而換位思考,以增加企業管理系學生畢業後的職場競爭力。
What is this course? The purpose of this course is to train students in the business management department to have the "market data analysis thinking" and the purpose is to train and generate as a "business analyst". This course will not and do not want to train as a data scientist or data engineer! In fact, the goal is to allow students to "talk" with data scientists or data engineers after a course of one year. The course will focus on improving students' understanding of programming logic and cross-domain communication skills. It is expected that students will be able to communicate with program designers and then think about their positions in order to increase their field competition after graduation from the Department of Enterprise Management.
徐聖訓(2019)。《一行指令學Python:用Pandas掌握商務大數據分析》。全華圖書
Yoon Hyup Hwang(2020)。《行銷資料科學實務:使用Python與R》。碁峰
Kotler and Keller (2019)。《行銷管理(第15版)》。華泰文化
Solomon(2016)。消費者行為(三版)。高立圖書(葉凱莉譯)
麥爾荀伯格、庫基耶(2013)。《大數據》。天下文化
Naomi Ceder(2019)。《Python 技術者們:練功!老手帶路教你精通正宗 Python 程式》。旗標
Sinan Ozdemir and Divya Susarla(2020)。《特徵工程不再難》。博碩
Foster Provost & Tom Fawcett(2016)。《資料科學的商業運用》。碁峯
Xu Shengshu (2019). "One Line Instruction Learning Python: Using Pandas to Master Large Data of Business". Full Chinese Book
Yoon Hyup Hwang (2020). "Selling Data Science Practice: Using Python and R". Grey Feng
Kotler and Keller (2019). "Selling Management (15th Edition)". Huatai Culture
Solomon (2016). Consumer behavior (III). Gao Li's Book (Ye Kaili translated)
McEzunberg, Kuchier (2013). "Big Data". World Culture
Naomi Ceder (2019). "Python Technicians: Practice! The old hand-telling guide teaches you how to master authentic Python programs. Flag mark
Sinan Ozdemir and Divya Susarla (2020). "Special Project Is No More Hard". Boshu
Foster Provost & Tom Fawcett (2016). "Business Usage of Data Science". Osho
評分項目 Grading Method | 配分比例 Grading percentage | 說明 Description |
---|---|---|
作業作業 Action |
20 | |
專題專題 Special topic |
50 | |
期中考期中考 Midterm exam |
30 |