1693 - Python與資料科學概論

Introduction to Data Science

教育目標 Course Target

本課程是在引導學生進入資料科學的領域,搭配Python程式語言進行實際操作,訓練學生具備程式設計、統計分析與專業領域的整合技能,以培養學生成為跨領域應用的資料科學家。課程設計將從最基礎的程式邏輯開始,用淺顯文字和簡短程式,手把手帶領學生學習Python的語法與各種應用,內容包括:一、網路資料擷取、資料清理與儲存;二、使用資料科學套件的進行探索資料分析;三、運用機器學習的演算法來預測資料;四、文字資料的探勘和視覺化的表達。
在完成此課程的學習,學生將能夠
(1) 對資料科學有基本的觀念,以及具備Python操作的能力;
(2) 從網際網路擷取不同型態的資料、瞭解資料分析的程序與方法、視覺化資料的表達與溝通;
(3) 運用所學到的知識與技能,融入在跨領域的應用。

This course is to guide students into the field of data science, and cooperate with Python programming language for actual operations, train students to integrate programming, statistical analysis and professional fields to cultivate data scientists who generate cross-domain applications. The course design will start from the most basic program logic, use clean text and short programs to lead students to learn Python's syntax and various applications, including: 1. Online data acquisition, data cleaning and storage; 2. Exploring data analysis using data science suite; 3. Predicting data using machine learning algorithms; 4. Exploration and visual expression of text data.
After completing the learning process, students will be able to
(1) Have basic concepts about data science and have the ability to operate Python;
(2) Obtain data of different types from the Internet, understand the procedures and methods of data analysis, and visualize the expression and communication of data;
(3) Use the knowledge and skills learned to integrate into applications across fields.

課程概述 Course Description

本課程是在引導學生進入資料科學的領域,搭配Python程式語言進行實際操作,訓練學生具備程式設計、統計分析與專業領域的整合技能,以培養學生成為跨領域應用的資料科學家。
課程設計將從最基礎的程式邏輯開始,用淺顯文字和簡短程式,手把手帶領學生學習Python的語法與各種應用,內容包括:一、網路資料擷取、資料清理與儲存;二、使用資料科學套件的進行探索資料分析;三、運用機器學習的演算法來預測資料;四、文字資料的探勘和視覺化的表達。

This course is to guide students into the field of data science, and cooperate with Python programming language for actual operations, train students to integrate programming, statistical analysis and professional fields to cultivate data scientists who generate cross-domain applications.
The course design will start from the most basic program logic, use clean text and short programs to lead students to learn Python's syntax and various applications, including: 1. Online data acquisition, data cleaning and storage; 2. Exploring data analysis using data science suite; 3. Predicting data using machine learning algorithms; 4. Exploration and visual expression of text data.

參考書目 Reference Books

教科書:自行編製講義。
參考書:
1. Grus, J. 2015. Data Science from Scratch. O’Reilly Media.
2. McKinney, W. 2017. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. 2nd Edition. O’Reilly Media.
3. VanderPlas, J. 2016. Python Data Science Handbook: Essential Tools for Working with Data. O’Reilly Media.
4. Hofmann, M. and A. Chisholm. 2016. Text Mining and Visualization: Case Studies Using Open-Source Tools. Taylor & Francis.

Textbook: Self-editing lectures.
Reference book:
1. Grus, J. 2015. Data Science from Scratch. O’Reilly Media.
2. McKinney, W. 2017. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. 2nd Edition. O’Reilly Media.
3. VanderPlas, J. 2016. Python Data Science Handbook: Essential Tools for Working with Data. O’Reilly Media.
4. Hofmann, M. and A. Chisholm. 2016. Text Mining and Visualization: Case Studies Using Open-Source Tools. Taylor & Francis.

評分方式 Grading

評分項目
Grading Method
配分比例
Percentage
說明
Description
無評分方式資訊 No grading information

授課大綱 Course Plan

點擊下方連結查看詳細授課大綱
Click the link below to view the detailed course plan

查看授課大綱 View Course Plan

相似課程 Related Courses

課程代碼
Course Code
課程名稱
Course Name
授課教師
Instructor
時間地點
Time & Room
學分
Credits
操作
Actions
選修-1744
經濟系2-4 游雅婷 四/2,3,4[ST020] 0-3 詳細資訊 Details

課程資訊 Course Information

基本資料 Basic Information

  • 課程代碼 Course Code: 1693
  • 學分 Credit: 0-3
  • 上課時間 Course Time:
    Thursday/2,3,4[ST020]
  • 授課教師 Teacher:
    游雅婷
  • 修課班級 Class:
    共選修2-4 (社科院開)
  • 選課備註 Memo:
    與經濟系1744課程併班
選課狀態 Enrollment Status

目前選課人數 Current Enrollment: 0 人

交換生/外籍生選課登記

請點選上方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by clicking the button above.