1061 - 增強學習
Reinforcement Learning
教育目標 Course Target
本課程學習各種強化學習技術和方法,並學習如何將AI人工智慧集成到各種遊戲與實際應用專案。本課程從基礎開始,學習馬爾可夫決策過程、Actor Critic方法、策略梯度算法、DQN等基礎方法。接著學習進階增強學習方法,像是A3C、PPO、分散式RL、以及exploration等。本課程案例使用Unity ML-Agent、openai gym 等平台做為學習環境,案例研究包括Atari遊戲、2048遊戲、自駕賽車、AlphaGo、投資分析、電網排程等主題。
This course learns various enhanced learning techniques and methods, and learns how to integrate AI artificial intelligence into various games and practical applications. This course starts with the basics and learns basic methods such as Markov decision-making process, Actor Critic method, policy gradient algorithm, DQN. Then learn advanced and enhanced learning methods, such as A3C, PPO, distributed RL, and exploration. This course case uses Unity ML-Agent, openai gym and other platforms as the learning environment. Case studies include Atari Games, 2048 Games, self-driving cars, AlphaGo, investment analysis, and online scheduling.
參考書目 Reference Books
書名 Deep Reinforcement Learning Hands-On
出版社 Packt Publishing
作者 Maxim Lapan
出版年 2018
Book name Deep Reinforcement Learning Hands-On
Publisher Packt Publishing
Author Maxim Lapan
Year of Publishing 2018
評分方式 Grading
評分項目 Grading Method |
配分比例 Percentage |
說明 Description |
---|---|---|
期中專題 Midterm topics |
20 | |
期末專題 Final topics |
30 | |
作業 Action |
30 | |
課堂出席 Class attendance |
20 |
授課大綱 Course Plan
點擊下方連結查看詳細授課大綱
Click the link below to view the detailed course plan
相似課程 Related Courses
無相似課程 No related courses found
課程資訊 Course Information
基本資料 Basic Information
- 課程代碼 Course Code: 1061
- 學分 Credit: 0-3
-
上課時間 Course Time:Wednesday/7,8,9[C106]
-
授課教師 Teacher:陳隆彬
-
修課班級 Class:資工系3,4
交換生/外籍生選課登記
請點選上方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by clicking the button above.