Home
資訊工程學系
course information of 109 - 2 | 1061 Reinforcement Learning(增強學習)

1061 - 增強學習 Reinforcement Learning


教育目標 Course Target

本課程學習各種強化學習技術和方法,並學習如何將AI人工智慧集成到各種遊戲與實際應用專案。本課程從基礎開始,學習馬爾可夫決策過程、Actor Critic方法、策略梯度算法、DQN等基礎方法。接著學習進階增強學習方法,像是A3C、PPO、分散式RL、以及exploration等。本課程案例使用Unity ML-Agent、openai gym 等平台做為學習環境,案例研究包括Atari遊戲、2048遊戲、自駕賽車、AlphaGo、投資分析、電網排程等主題。This course learns various reinforcement learning techniques and methods, and learns how to integrate AI artificial intelligence into various games and practical application projects. This course starts from the basics and learns basic methods such as Markov decision process, Actor Critic method, policy gradient algorithm, and DQN. Then learn advanced reinforcement learning methods, such as A3C, PPO, distributed RL, and exploration, etc. This course case uses Unity ML-Agent, openai gym and other platforms as the learning environment. Case studies include Atari games, 2048 games, self-driving racing, AlphaGo, investment analysis, power grid scheduling and other topics.


參考書目 Reference Books

書名 Deep Reinforcement Learning Hands-On
出版社 Packt Publishing
作者 Maxim Lapan
出版年 2018

Book title Deep Reinforcement Learning Hands-On
Publisher Packt Publishing
Author Maxim Lapan
Year of publication 2018


評分方式 Grading

評分項目 Grading Method 配分比例 Grading percentage 說明 Description
期中專題期中專題
Midterm topic
20
期末專題期末專題
Final topic
30
作業作業
Homework
30
課堂出席課堂出席
class attendance
20

授課大綱 Course Plan

Click here to open the course plan. Course Plan
交換生/外籍生選課登記 - 請點選下方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by click the button below.
請先登入才能進行選課登記 Please login first


相似課程 Related Course

很抱歉,沒有符合條件的課程。 Sorry , no courses found.

Course Information

Description

學分 Credit:0-3
上課時間 Course Time:Wednesday/7,8,9[C106]
授課教師 Teacher:陳隆彬
修課班級 Class:資工系3,4
選課備註 Memo:
授課大綱 Course Plan: Open

選課狀態 Attendance

There're now 14 person in the class.
目前選課人數為 14 人。

請先登入才能進行選課登記 Please login first