介紹線性代數的理論與應用。本學期將延續上學期的進度,後續再介紹抽象向量空間的概念,以及向量空間上的線性變換、正交性、基底變換以及內積等性質。Introduce the theory and application of linear aging. This period will continue to progress in the previous period, and then introduce the concept of abstract vector space, as well as the properties of linear transformation, orthogonality, substrate transformation and internal space on vector space.
本課程為進階課程,課程著重於廣義向量空間、子空間與內積向量空間的特性及其相關應用,包括:向量空間的同構、向量空間之線性轉移、矩陣反矩陣、函數反函數、矩陣的對角線化、向量的正交性等問題的性質及其相關應用。
This course is an advanced course. The course focuses on the characteristics and related applications of broad vector space, subspace and internal vector space, including: the synonym of vector space, linear shift of vector space, matrix inverse function, function inverse function, the angular linearization of matrix, vector orthogonality and other problems.
Linear Algebra: with Applications, 7/e by W. Keith Nicholson
linear algebra: with applications, 7/EB Eye W. Keith Nicholson
評分項目 Grading Method | 配分比例 Grading percentage | 說明 Description |
---|---|---|
期中考期中考 Midterm exam |
25 | |
期末考期末考 Final exam |
25 | |
小考小考 Small exam |
40 | 共計兩次小考,各佔 20% |
平時成績平時成績 Regular achievements |
10 |