Home
通識課程:邏輯思維與運算
course information of 109 - 1 | 3358 Computational Thinking: Python and Open Data(邏輯思維與運算:Python與開放資料應用)

3358 - 邏輯思維與運算:Python與開放資料應用 Computational Thinking: Python and Open Data


教育目標 Course Target

目標: - 學習計算思維 - 學會 Python 語言基本應用能力 - 學會如何使用 Python 相關套件做資料分析及處理 - 學會資料視覺化 - 奠定日後大數據相關應用之基石 內涵: 本課程針對非資訊相關科系所學生,能學習各科系領域及未來職場之數位技能與運算思維,使得您具備資訊程式技能,未來也在於可以結合這些資訊工具,解決特定領域的專業問題。本課程藉由學習程式語言Python,帶領同學撰寫程式、運用開放資料進行資料分析及處理,以尊定大數據分析基礎。Python是一種簡單易學、容易閱讀,這門課程將深入淺出的帶領大家認識這個語言,學習電腦運算思維。課程帶領同學從日常的資料處理進入電腦科學的領域,能夠將自身專業所學理論實現於真實應用,以程式語言解決實際生活問題與專題以自然領域應用為導向,包含教導同學如何分析網路資料、政府的資料開放平臺(open data)、大數據分析以及資料視覺化方法,並能以清楚明瞭的圖表方式來呈現,對於資料所呈現的訊息能快速地掌握。 Target: - Learn computational thinking -Learn basic application skills of Python language - Learn how to use Python related packages for data analysis and processing - Learn to visualize data - Lay the foundation for future big data related applications Connotation: This course is aimed at students from non-information related majors. It can learn digital skills and computational thinking in various fields and future workplaces, so that you can have information programming skills. In the future, you can also combine these information tools to solve professional problems in specific fields. By learning the programming language Python, this course guides students to write programs and use open data for data analysis and processing, so as to establish the basics of big data analysis. Python is a simple language that is easy to learn and read. This course will guide you to understand this language and learn computer computing thinking in simple and easy-to-understand terms. The course leads students from daily data processing to the field of computer science, enabling students to implement the theories they have learned in their majors into real applications, using programming language to solve real-life problems and special topics oriented to natural field applications, including teaching students how to analyze network data , the government's open data platform (open data), big data analysis and data visualization methods, and can be presented in clear diagrams, so that the information presented in the data can be quickly grasped.


參考書目 Reference Books

1. 自編教材
2. https://blockly-games.appspot.com
3. https://www.codecademy.com/learn/python
4. https://openpyxl.readthedocs.io/
5. https://docs.scipy.org/doc/
6. http://pandas.pydata.org
7. http://bokeh.pydata.org/

1. Self-compiled teaching materials
2. https://blockly-games.appspot.com
3. https://www.codecademy.com/learn/python
4. https://openpyxl.readthedocs.io/
5. https://docs.scipy.org/doc/
6. http://pandas.pydata.org
7. http://bokeh.pydata.org/


評分方式 Grading

評分項目 Grading Method 配分比例 Grading percentage 說明 Description
期中專題報告期中專題報告
Mid-term special report
30
期末專題報告期末專題報告
Final special report
30
出席狀況及平時表現出席狀況及平時表現
Attendance status and usual performance
20
課堂練習及作業繳交課堂練習及作業繳交
Class exercises and homework submissions
20

授課大綱 Course Plan

Click here to open the course plan. Course Plan
交換生/外籍生選課登記 - 請點選下方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by click the button below.
請先登入才能進行選課登記 Please login first


相似課程 Related Course

很抱歉,沒有符合條件的課程。 Sorry , no courses found.

Course Information

Description

學分 Credit:3-0
上課時間 Course Time:Thursday/10,11,12[ST020]
授課教師 Teacher:劉耀東
修課班級 Class:共必修1-4
選課備註 Memo:資工系、資管系學生不得選
授課大綱 Course Plan: Open

選課狀態 Attendance

There're now 52 person in the class.
目前選課人數為 52 人。

請先登入才能進行選課登記 Please login first