本課程運動健康大數據應用將有計畫性地結合各種政府運動開放資料來源及網路社群,介紹數據收集爬蟲技術,進而教授文本分析統計技術,最後結合流行之地理圖資技術及基本運動感測物聯網,讓學生可以自由創作所需之運動社群地圖,供實際運動活動規劃及訓練所需,首先對運動大數據資料來源進行介紹,包括各種運動相關部落格如痞客邦、隨意窩日誌等,接著介紹運動生理量測物聯裝置,進而介紹使用方法,特別對與各種健身器材之關聯性進行介紹,接著介紹基本統計分析技術,如卡方分析、t檢定等,並結合雲端物聯社群介面進行資源共享;進而學習以物聯數據量測大數據之群組分享,最後以業界出題之運動活動規畫及訓練成效社群分享進行產學合作專題呈現,讓學生了解運動大數據應用的重要性,並應用到運動產業。使學生畢業後可以結合流行之物聯社群工具進行運動實務推廣,對國民之休閒娛樂及運動成效有莫大的助益。This course will plan to combine various government sports data sources and online communities, introduce data collection and crawling technology, and then teach text analysis statistical technology, and finally combine popular geographical map information technology and basic sports sense The test network allows students to freely create required sports community maps for the planning and training of international sports activities. First, introduce large data sources of sports, including various sports-related blogs such as Pixnet and Shiyi Blog, etc., and then Introduce the sports physiological measurement device, and then introduce the usage method, and specifically introduce the correlation with various fitness equipment. Then introduce basic statistical analysis techniques, such as chi-square analysis, t-confirmation, etc., and combine cloud-based community interfaces for resource sharing. Enjoy; then learn to share large data using material data measurement, and finally present the topic of product cooperation based on sports activities planning and training effectiveness community sharing, so that students can understand the importance of sports data application and apply it to sports industries. After graduating, students can combine popular community tools for sports promotion, which will greatly benefit the citizens' leisure entertainment and sports results.
(1) Python:網路爬蟲與資料分析入門實戰,博碩書局,作者(林俊瑋, 林修博)
(2) 統計分析與R,五南書局,作者(陳正昌, 賈俊平)
(1) Python: Online crawling and data analysis into the door-to-door battle, Boss Book Bureau, author (Lin Junwei, Lin Xiubo)
(2) Statistical Analysis and R, Wunan Book Bureau, author (Chen Zhengchang, Ja Junping)
評分項目 Grading Method | 配分比例 Grading percentage | 說明 Description |
---|