本課程藉由Python的相關套件與互動式資料分析環境(Jupyter Notebook),幫助同學學習資料分析的相關步驟及機器學習的主要方法。課程涵蓋的主要套件包括:NumPy, SciPy, Pandas, Matplotlib及Scikit-learn等套件。課程並介紹如何使用這些套件讀取並分析財務報表資料,再以機器學習的方法模擬股價走勢。This course helps students learn related steps of data analysis and the main methods of machine learning through Python-related suites and interactive data analysis environments (Jupyter Notebook). The main suites covered by the course include: NumPy, SciPy, Pandas, Matplotlib and Scikit-learn. The course also introduces how to use these kits to read and analyze financial report data, and then simulate stock price movements through machine learning.
張靜雯譯(Wes McKinney原著),2018,Python資料分析,第二版,歐萊禮出版。
Zhang Jingwen Lu (original work by Wes McKinney), 2018, Python data analysis, second edition, published by Ole Levitra.
評分項目 Grading Method | 配分比例 Grading percentage | 說明 Description |
---|