1168 - 軟式計算 英授 Taught in English
Soft Computing
教育目標 Course Target
傳統計算的主要特徵是嚴格、確定和精確,但其並不適合處理現實生活中的許多問題,例如駕駛汽車、下棋、家電控制…等。但軟式計算基於其不確定、不精確及不完全真值的容錯特性,可提供低成本的方案解決許多日常生活中的問題。本課程將介紹軟式計算的基本原理、相關計算模式,及其在人工智慧與機器學習領域的應用。本課程將介紹的軟式計算的計算模式主要包括了: Neural networks、support vector machine、fuzzy logic、evolutionary computation、simulated annealing、swarm intelligence、Bayesian network…等。此外,本課程將搭配相關工具軟體的實際演練,讓學生未來可易於將所學套用在研究與工作上。
The main characteristics of traditional computing are strict, deterministic and precise, but it is not suitable for dealing with many problems in real life, such as driving a car, playing chess, controlling home appliances, etc. However, soft computing can provide low-cost solutions to many problems in daily life based on its fault-tolerant characteristics of uncertainty, imprecision and incomplete truth values. This course will introduce the basic principles of soft computing, related computing models, and its applications in the fields of artificial intelligence and machine learning. The computing models of soft computing that this course will introduce mainly include: Neural networks, support vector machine, fuzzy logic, evolutionary computation, simulated annealing, swarm intelligence, Bayesian network...etc. In addition, this course will be paired with practical exercises on relevant tools and software, so that students can easily apply what they have learned to research and work in the future.
參考書目 Reference Books
1. 蘇木春、張孝德,機器學習:類神經網路、模糊系統以及基因演算法則,第四版,全華圖書股份有限公司,2017 年 3 月
2. 李聯旺、廖珗洲、謝政勳,人工智慧:智慧型系統導論,第三版,全華圖書股份有限公司,2012 年 3 月
3. Sebastian Raschka, Vahid Mirjalili, Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 2nd Edition, Packt Publishing Limited., September 20, 2017.
4. Prateek Joshi, Artificial Intelligence with Python, Packt Publishing Limited., January 2017.
1. Su Muchun, Zhang Xiaode, Machine Learning: Neural Networks, Fuzzy Systems and Genetic Algorithm Principles, Fourth Edition, Quanhua Book Co., Ltd., March 2017
2. Li Lianwang, Liao Juezhou, and Xie Zhengxun, Artificial Intelligence: An Introduction to Intelligent Systems, Third Edition, Quanhua Book Co., Ltd., March 2012
3. Sebastian Raschka, Vahid Mirjalili, Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 2nd Edition, Packt Publishing Limited., September 20, 2017.
4. Prateek Joshi, Artificial Intelligence with Python, Packt Publishing Limited., January 2017.
評分方式 Grading
評分項目 Grading Method |
配分比例 Percentage |
說明 Description |
---|---|---|
課堂參與 class participation |
15 | |
課堂作業 Classwork |
35 | |
期中考 midterm exam |
25 | |
期末專題 Final topic |
25 |
授課大綱 Course Plan
點擊下方連結查看詳細授課大綱
Click the link below to view the detailed course plan
相似課程 Related Courses
無相似課程 No related courses found
課程資訊 Course Information
基本資料 Basic Information
- 課程代碼 Course Code: 1168
- 學分 Credit: 0-3
-
上課時間 Course Time:Wednesday/7,8,Thursday/5[C112]
-
授課教師 Teacher:焦信達
-
修課班級 Class:資工系3,4
-
選課備註 Memo:軟工組分組選修
交換生/外籍生選課登記
請點選上方按鈕加入登記清單,再等候任課教師審核。
Add this class to your wishlist by clicking the button above.