線性代數是處理多變量問題的最基本的工具,不僅在學術研究非常重要,其應用的範圍從資訊,統計,工程,經濟乃至於管理,幾乎涵蓋所有的應用領域。線性代數的本質是矩陣分析。本課程是基礎線性代數的延伸課程,研究的對象是矩陣,其目標如下:
1. 學習依據矩陣的重要性質為矩陣分類。
2. 學習以最簡形式作為同類矩陣的代表。
3. 在性質不變的情況下,學習將複雜的矩陣化簡為形式簡單的矩陣。Linear adoption is the most basic tool for dealing with multi-variable problems. It is not only very important in academic research. Its application ranges from information, statistics, engineering, economy and even management, covering almost all application areas. The essence of linear generation is matrix analysis. This course is an extended course of basic linear generations. The research object is matrix, and its goals are as follows:
1. Learn to classify matrix according to the importance of matrix.
2. Learn to represent the same matrix in the simplest form.
3. Under the condition of constant change in nature, learn to simplify complex matrices into simple formal matrices.
1. Roger A. Horn and Charles R. Johnson, Matrix Analysis, Cambridge Univesity Press, 1985.
2. Roger A. Horn and Charles R. Johnson, Topics in Matrix Analysis, Cambridge Univesity Press, 1991.
1. Roger A. Horn and Charles R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
2. Roger A. Horn and Charles R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
評分項目 Grading Method | 配分比例 Grading percentage | 說明 Description |
---|---|---|
第一次小考第一次小考 First small exam |
25 | |
期中考期中考 Midterm exam |
25 | |
第二次小考第二次小考 The second small exam |
25 | |
期末考期末考 Final exam |
25 | |
作業與平時成績作業與平時成績 Work and daily performance |
10 |