接續上學期有關單變數微積分理論與技巧的介紹,本學期的目標為瞭解單變數積分技巧、數列與級數理論、多變數函數的微分與極值問題的處理方法,以及多重積分的理論與計算技巧等等。In the previous period, there were introductions to the theory and techniques of micro-scores of single variables. The goal of this period was to understand the techniques of single variable scores, column and level mathematical theory, differential and extreme value problems of multiple variable functions, as well as the theory and calculation skills of multiple fractions, etc.
介紹微積分的理論及其應用,多項式、有理式、根式、三角函數、反三角函數、指數函數、對數函數的微分和積分。將微分應用在求變化率、極值、及畫圖上,並將積分應用在求長度、面積、體積、及函數的平均值上。
Introduces the theory and its application of micro-scores, multiple forms, rational forms, root forms, trigonometric functions, inverse trigonometric functions, exponential functions, and differential and fractional functions of numerical functions. Apply differentials to find the rate of change, extreme values, and diagrams, and apply the total score to find the average of length, area, volume, and functions.
Adams/Calculus-A Complete Course 6/e
Adams/Calculus-A Complete Course 6/e
評分項目 Grading Method | 配分比例 Grading percentage | 說明 Description |
---|---|---|
小考(一)小考(一) Small Exam (1) |
15 | |
期中考期中考 Midterm exam |
25 | |
小考(二)小考(二) Small Exam (Two) |
15 | |
期末考期末考 Final exam |
25 |